Green Synthesis, Characterization and Antibacterial Activity of Zinc Oxide and Titanium Dioxide Nanoparticles Using Terminalia Catappa and Cymbopogon Citratus Leaf Extract


  • Muhammad Dahiru Faruruwa Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria
  • Femi Emmanuel Awe Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria
  • Hadiza Abba Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria


Nano-particles, inhibition, synthesis and pathogens


This study synthesized zinc oxide and titanium oxide nanoparticles using green syntheses method mediated by Terminalia
catappa and Cymbopogon citratus leaves extracts. Zinc nitrate hexahydrate Zn (NO3)2.6H20 and TiO (OH)4 were the precursors for the ZnO NPs and TiO (OH)4 synthesis respectively. Results obtained revealed maximum wavelength of absorption for the
ZnO-NP (330 nm) and TiO4 (410 nm). Useful functional groups (that are typical for the presence of compounds known for their
reducing properties) were found in the extracts) Synthesized nanoparticles were characterized using UV-visible spectrometer,
FTIR, SEM and XRD. XRD pattern matching that of Joint Committee on Powder Diffraction Standards (JCPDS) card for ZnO confirmed the presence of hexagonal ZnO NPs with an average size of 76 nm while the results revealed the anatase and rutile form of TiO2 with an average crystalline size of 79 nm Antimicrobial activities of the synthesized nanoparticles were established for some selected water-borne pathogens (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa
and Salmonella typhi).


Download data is not yet available.

Author Biographies

Muhammad Dahiru Faruruwa , Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria

Department of Chemistry

Femi Emmanuel Awe, Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria

Department of Chemistry

Hadiza Abba, Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria

Department of Chemistry


Ali, I. & Aboul-Enein, H. Y. (2004). Chiral pollutants: distribution, toxicity and analysis by chromatography and capillary electrophoresis. John Wiley & Sons, Chichester, UK.

Ali, I. (2015). New generation adsorbents for water treatment. Chemical Reviews, 112, pp. 5073-5091.

Ali, K., Ahmed, B., Dwivedi, S., Saquib, Q.,Al-Khedhairy,A. A., & Musarrat, J. (2015). Microwave accelerated green Synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates, Plus One, doi:


Anderson, C.W.N., Brooks, R., Stewart, R. B. & Simcock, R. (1999). Gold uptake by plants. The Journal of Gold Science, Technology and Applications. 32, 2, pp.48-52.

Amin, M. T., Alazba, A. A. & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances in Materials Science and Engineering, 825910,

Brayner, R., Ferrari- illiou, R., Brivois, N., Djediat, S., Benedetti, M. F. & Fievet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters. 6, pp. 866-870.

Charannya, S., Duraivel, D., Padminee,K., Poorni, S., Nashanthine, C. & Srinivasan, M.(2018). Comparative evaluation of antimicrobial efficacy of silver nanoparticles and 2% chlorhexidine gluconate when used alone and in combination assessed using agar diffusion

method. Contemporary Clinical Dentistry, 9, 6, pp. 2004-209.

Dar, N. J., Hamid, A. & Ahmad, M. (2015). Pharmacologic overview of with aniasomnifera, the Indian Ginseng. Cell. Mol. LifeSci.72, pp. 4445–4460.

Deyev, S., Proshkina, G., Ryabova, A., Tavanti, F., Menziani, M.., Eidelshtein, G., Avishai, G. & Kotlyar, A. (2017). Synthesis, characterization and selective delivery of DARP in gold nanoparticles conjugates to cancer cells. Bioconjugate chemistry. 28, 10, pp. 2569- 2574.

Dobrucka, R. (2017). Synthesis of Titanium Dioxide Nanoparticles Using Echinacea purpurea Herba (Spring 2017). Iranian

Journal of Pharmaceutical Research 16, pp.756–762.

Eddy, N. O. & Ekop, A. S. (2007). Assessment of the quality of water treated and distributed by the Akwa Ibom Water Company. E. Journal of Chemistry. 4, pp.180-186..

Eddy, N. O & Garg, R. (2021). CaO nanoparticles: Synthesis and application in water purification. Chapter 11. In:

Handbook of research on green synthesis and applications of nanomaterials. Garg, R., Garg, R. and Eddy, N. O, edited. Published by IGI Global Publisher. doi: 10.4018/978-1-7998-8936-6

Garg, R. Rani, P., Garg, R. & Eddy, N. O. (2021). Study on potential applications and toxicity analysis of green synthesized nanoparticles. Turkish Journal of Chemistry, 45, doi:10.39906/kim-2106-59

Garima, S., Bhavesh, R., Kasariya, K. R., Sharma, A. R & Singh, R. P. (2011). Biosynthesis of Silver nanoparticles using Ocimum sanctum (Tulasi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research. 13, 7,pp. 2981–2988.

Geoprincy, G., Vidhya, S. B. N., Poonguzhali, U., Nagendra, G. N. & Renganathan, S. (2012). A Review on green synthesis of Communication in Physical Sciences, 2021, 7(4): 563-572 571

Silver nanoparticles. Asian Journal of Pharmaceutical and Clinical Research. 6,1, pp. 8-12.

Ghosh, S., Salunke, G. R., Kumar, R.S., Khade, S., Vashisth, P., Kale, T. & Chopade, B. A. (2014). Rapid efficient synthesis and characterization of silver, gold and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. International Journal of Nanomedicine, 9, 2635, doi: 10.2147/IJN.S59834

Helan, J. C., Anand, R. L. F. A., Namasivayam, S. K. R. & Bharani, R. S. A. (2013). Improved pesticidal activity of fungal metabolite from Nomuraea rileyi with chitosan nanoparticles, ICANMEET,IEEE: 387-390.

Hashemi, S.S., Allafchian, S.Z., Jalali, S.A.H., Vahabi, M.R. & Mirahmadi – Zare, S. Z. (2016). Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. Journal of nanostructure chemistry, 6, pp. 129 – 135.

Hillie, T. & Hlophe, M. (2007). Nanotechnology and the challenge of clean water. Nature Nanotechnology. 2, pp. 663 – 664.

Jayaseelan, C., Rahuman, A.A., Roopan, S. M., Kirthi, A.V., Venkatesan, J., Kim, S. K., Iyappan, M. & Siva, C. (2013).] Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim. Acta, Part A. 107, pp. 82 – 89.

Jia, L., Zhang, Q., Li, Q. & Song, H. (2009). The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: Long lifetime nanocatalyst for p nitrotoluene hydrogenation. Nanotechnology .20, 38, pp. 385- 601.

Kumar, B., Smita, K., Cumbal, L. & Debut, A., (2014), Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorganic Chemistry and Applications,

Krishnaraj, C., Jagan, E. G., Rajesekar, S., Selvakumar, P., Kalaichelvan, P.T. & Mohan, N. (2010). Synthesis of silver nanparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces. 76, 1, pp.

– 56.

Manokari, M., Ravindran, C. P. & Shekhawat, M. S. (2016a). Biosynthesis of zinc oxide nanoparticles using Meliaazedarach L. extracts and their characterization.Int. Journal of Pharmaceutical Science Research, 1, 1, pp. 31-36.

Aminuzzaman, M., Lim, P.Y., Wee-Shenog, G. & Akira, W. (2018). Green synthesis of zinc oxide nanoparticles using aqeous

extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bulletin of Material Science, 41, 50,

Oudhia, A., Kulkarni, P. & Sharma, S. (2015). Green synthesis of ZnO nanotubes for bioapplications, International Journal of

Advanced Engineering Research and Studies, 6 , 2, pp. 280-281.

Pandey, J., Khare R., Kamboj M., Khare S. & Singh R. (2011). Potential of nanotechnology for the treatment of waste water. Asian Journal of Biochemical and Pharmaceutical Research, 1, 2, pp. 272.

Prachi, Gautam P., Madathil D. & Nair A. N. B. (2013). Nanotechnology in Waste Water Treatment: A Review. 5, 5, pp. 2303-2308.

Qu, J., Yuan, X., Wang, X. & Shao, P. (2011). Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environmental pollution. 159, 7, pp. 1783- 1788.

Raja, S. K. N., Anand, R. L. F. A., Robin, A. T. G., Helan, J. C. & Arvind, R.S.B. Communication in Physical Sciences, 2021, 7(4): 563-572 572

(2014). Optimal synthesis of biocompatible bovine serum nanoparticles- incorporated quercetin (BSA NPS-QT) nano drug conjugate for

the controlled release and improved anti oxidative activity. Research Journal of Pharmaceutical Biological and Chemical Sciences. 5, pp. 478-487.

Rajakumar, G., Rahuman, A.A., Jayaseelan, C., Santhoshkumar, T., Marimuthu, S., Kamaraj, C., Bagavan, A., Zahir, A.A., Kirthi, A.V. and Elango, G.(2015). Solanum Trilobatum Extract-mediated Synthesis of Titanium Dioxide Nanoparticles to Control Pediculus

Humanus Capitis, Hyalomma Anatolicum Anatolicum and Anopheles Subpictus. Parasitology Research 113, 2, pp. 469–479.

Rajendran, P. S. and Sengodan, K. (2017). Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. Journal of nanoscience. 8348507

Sangeetha, G., Rajeshwari, S. & Venckatesh, R. (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller

leaf extract: Structure and optical properties. Materials Research Bulletin, 46, pp. 2560-2566.

Sharma, N. C., Sahi, S.V., Nath, S., Parsons, J.G., Gardea- Torresdey, L. J. & Pal, T. (2007). Synthesis of plant mediated gold nanoparticles and catalytic role of biomatrix embedded nanomaterials. Environmental Science and Technology.41, 14, pp. 5137 -5142.

Sundarrajan, C., Sankari, A., Dhandapani, P., Maruthamuthu, S., Ravichandran, S., Sozhan, G. & Palaniswany, N. (2012). Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess and Biosynthesis Engineering. 35, 3, pp.827- 833.

Shriram Joglekar, Kisam Kodam, Mayur Dhaygude & Manish Hudlikar (2011). Novel route for rapid synthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. Latex. Materials letters. 65, 19-20, pp. 3170 – 3172.

Sivakumar, J., Premkumar, C., Santhanam, P. and Saraswathi, N. (2004). Biosynthesis of Silver nanoparticles using Calotropis

gigantean leaf. African. Journal of Basic and Applied. Science. 3, pp. 265-270.

Thamidela, S., Pinjari, A.B. and Bommana, K. (2017). Isolation and characterization of pathogenic bacteria from Kundu River water of Nandyal, Andhra Pradesh, India. Journal of Applied Science. 17, pp. 475 –481.

Vidya, C., Hiremath, S., Chandraprabha, M. & Antonyraj, M. (2013). Green synthesis ofZnO nanoparticles by Calotropis gigantea.

Proceedings of National Conference on „Women in Science & Engineering‟ (NCWSE 2013), SDMCET Dharwad, pp.118-120.