A Note On The Proofs Of Cramer’s Formula
Keywords:
Cramer’s method, Determinant, system of linear equations, modify Cramer’s methodAbstract
Communication in Physical Sciences, 2024, 11(1): 127-135
Authors: Njoku, Kevin Ndubuisi Chikezie* and Okoli, Odilichukwu Christian.
Received: 20 December 2023/Accepted: 28 February 2024
The work of Gabriel Cramer (1704-1752) that yielded the formula for solving an arbitrary number of unknown in a square linear system of equations has witnessed in the recent past, several methods of proofs regardless of the supposed high computational cost. It is our purpose in this research to proffer an alternative method of proof to Cramer’s formula for solving square linear system of equations
Downloads
References
Babarinsa, O. & Kamarulhaili, H. (2017). Modification of cramer’s rule. Journal. Fundam. Appl. Sci.,9, pp. 556-567.
Babarinsa, O. & Kamarulhaili, H. (2019). Modified Cramer’s Rule and its Application to Solve Linear Systems in WZ Factorization MATEMATIKA, 35, 1, pp. 25–38.
Barnard S. & Child, J (1959). Higher Algebra. London Macmillan LTD, New York, ST Martin¬¬* s Press, 131.
Boyer, C. B. (1996). Colin Maclaurin and Cramers Rule. Scripta Math. 27, pp 377-379.
Brunetti, M. (2014). Old & new proofs of Cramer's Rule. Applied Mathematical Sciences, 8, 133, pp. 6689 – 6697
Bunch, J. R. & Hopcroft, J. E. (1974). Triangular factorization and inversion by fast matrix multiplication, Mathematics of Computation, 28, pp.. 231 – 236.
Cramer, G. (1750). Introduction _a l'analyse des lignes courbes alg_ebriques, Geneva: Freres Cramer & Cl. Philbert.
Curtis, C. W. (1963). Linear Algebra, Boston: Allyn and Bacon.
Debnath, L. (2013). A brief historical introduction to matrices and their applications. International Journal of Mathematical Education in Science and Technology, 45, 3, pp. 360-377.
Debnath, L (2013). A brief historical introduction to matrices and their applications. International Journal of Mathematical Education in Science and Technology,45, 3, pp. 360-377.
Ehrenborg, R. A. (2004). Conceptual Proof of Cramer's Rule, Math. Mag. 77 no. 4, 308. Old and new proofs of Cramer's rule 66-97.
Eves, H. (1990). An introduction to the History of Mathematics,– 493, Saunders College Publishing.
Ferrar W. L.: (1957). Algebra. A Text-Book of determinants, matrices, and algebraic forms, Second edition, Fellow and tutor of Hertford college Oxford, 7
Gjonbalaj, Q. and Salihu, A. (2010). Computing The Determinants by reducing the orders by four. Applied Mathematics E – Notes, 10, pp. 151 – 158.
Hamiti, E (2002) Matematika I, Universiteti I Prishtines: Fakulteti Elektroteknik, Prishtine, pp. 163 -164
Hedman, B. A. (1999). An earlier date for `Cramer's rule. Historia Math. 26, 4, pp. 365{368.
Horn, R. A. & Johnson, C. A. (1985). Matrix analysis, New York: Cambridge University Press.
Jacobi, C. G. J. (1884). De Formatione et Proprietatibus Determinantium, in Idem, Gesammelte Werke vol. III, Berlin: G. Reimer, pp. 355-392.
Kosinsky, A. A. (2001). Cramer's Rule is due to Cramer, Math. Mag. 74, 4, 310{312.
Lang, S. (2004). Linear Algebra, 3rd ed., New York: Springer-Verlag.
Lomonaco, L. A. (2013). Geometria e algebra. Vettori, equazionie curve elemen- tari, Roma: Aracne.
MacLaurin, C. (1748) A treatise of algebra. London: A. Millar and J. Nourse.
Muir, T. (1960). The theory of determinants in the historical order of development, vol. 1, New York: Dover Publications.
Okoli O. C. & Nsiegbe N. A. (2022) Undetermined parameter Method; a Dodgson’s condensation-base applicat- ion of cramer’s rule for solving linear systems, 3rd International Scientific Conference by FS, COOU (FAPSCON) , Vol 5 (1); 410 - 423.
Okoli, O. C. & Nsiegbe N. A., (2021). Correction to “A new and simple method of solving large linear systems based on Cramer’s rule but employing Dodgson’s condensation”, COOU Journal of Physical Sciences (CJPS), 1, 4, pp. 219 - 225.
Robinson, D. J. S. (2006). A Course in Linear Algebra with Applications, New Jersey: World Scientific.
Robinson, S. M. (1970). A Short Proof of Cramer's Rule. Math. Mag. 43, 2, pp. 44-45.
Scott, R. F (1904). The theory of determinants and their applications, Ithaca, New York: Cornell University Library, Cambridge: University Press, 3 – 5.
Trudi, N. (1862). Teoria de determinanti e loro applicazioni, Napoli: Pellerano.
Ufuoma, O. (2013). A new and simple method of solving large linear systems: based on cramer’ s rule but employing dodgson’ s condensation. In the Proceedings of the World Congress on Engineering and Computer Science, San Francisco
Ufuoma, O. (2019). A New and Simple Condensation Method of Computing Determinants of Large Matrices and Solving LargeLinear Systems, Asian Research Journal of Mathematics 15, 4, pp. 1-13; Article no. ARJOM.51185
Vandermonde, A. 772). Memoire sur elimination, Historie de l'Acade royale des Sciences, Paris, pt. 2, pp. 516-532.
Whitford, D. E. and Klamkin, M. S. (1953). On an elementary derivation of Cramer's rule, Amer. Math. Monthly 60, pp. 186-187.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.