Development and Applications of the Type II Half-Logistic Inverse Weibull Distribution
DOI:
https://doi.org/10.4314/9zk6e341Keywords:
Type II Half-Logistic , Exponentiated-G, Inverse Weibull distribution, Hazard function, Reliability function, Maximum likelihood, Order StatisticsAbstract
A variety of distribution classes have emerged by expanding or generalizing well-known continuous distributions to enhance their flexibility and adaptability across various fields. One such distribution is the Inverse Weibull (IW) distribution, introduced by Keller and Kanath in 1982, which has proven effective in modelling failure characteristics. Over the years, several extensions of the IW distribution have been developed, including the Beta Inverse Weibull, Kumaraswamy-Inverse Weibull, and many others. This paper introduces a novel extension called the Type II Half-Logistic Inverse Weibull (TIIHLEtIW) distribution, derived from the Type II Half-Logistic Exponentiated-G (TIIHLEt-G) family proposed by Bello et al. in 2021. The TIIHLEtIW distribution incorporates two additional shape parameters, enhancing its flexibility. We provide the cumulative distribution function (cdf), probability density function (pdf), and key statistical properties, including moments, moment-generating function, reliability function, hazard function, and quantile function. Maximum likelihood estimation (MLE) is employed for parameter estimation, and a simulation study evaluates the performance of the MLEs. Finally, the applicability and superiority of the TIIHLEtIW distribution are demonstrated through a comparative study using two real datasets, showcasing its improved fit over several established distributions.
Downloads
Published
Issue
Section
Similar Articles
- Richard Alexis Ukpe, Synthesis and Characterization of Calcium Oxide Nanoparticles (CaO-NPs) from Waste Oyster Shells , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
- Yusuf James, Yisa Jonathan, Jimoh Oladejo Tijani, Razak Bolakale Salau, Elijah Yanda Shaba , Mr. , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Daniel Chukwunonso Chukwudi, Identifying Erosion-Prone Areas in the Mackinaw Watershed Using Geospatial Techniques , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- S. U. Oghoje, Biofacilitation Potential of Sawdust on Landfarming of Petroleum Hydrocarbons Polluted Soils , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- Kamureyina Ezekiel, Ruth Justine Ija, Victor Gambo Na’Allah, Subsurface Structural Analysis Using High Resolution Aeromagnetic Data In Guyuk-Shani And Environs: A Geophysical Approach To Hydrocarbon Prospectivity , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Fabian James Umoren, Mfon Clement Utin, Resource Recovery from Maize Wastes; Synthesis and Characterization of Silicon Oxide Nanoparticles , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Agada Livinus Emeka, Adetola Sunday Oniku, Osita Meludu, Evaluation of Groundwater Potential in Gashua Northeast Nigeria, Using Electrical Resistivity Method , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- Vincent Oseikhuemen Odia-Oseghale, Joseph Odion Odia-Oseghale, Environmental Implications of Quarrying and Waste Management: A Case Study of Okhoro, Benin City , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Elizabeth C. Nwaokorongwu, Dual Solution Synthesis and Characterization of Sns:Zns Alloyed Thin Films and Possible Applications in Solar Systems and Others , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- O. V. Ikpeazu, Ifeanyi E. Otuokere,, K. K. Igwe, Colorimetric Determination of Stability Constant of Acetaminophen-Cu(II) complex by Classical Equation Depending on Stoichiometric Curves , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
You may also start an advanced similarity search for this article.



