Chaotic Signature in Power Spectrum and Recurrence Quantification of Dynamical Behaviour of Multivariate Time Series

Authors

  • Abidemi Emmanuel Adenij University of Technology Ota, Ogun State.

Keywords:

Power Spectral Density, Underlying dynamics, Determinism, Low dimensional chaos

Abstract

Communication in Physical Sciences, 2024, 11(2): 332-344

Authors: Abidemi Emmanuel Adeniji., Kayode Stephen Ojo and Adekunle Oluseye Sangotola

Received: 17 March 2024/Accepted: 01 May 2024

This study investigates the presence of nonlinear dynamics and chaotic behaviour in air temperature, atmospheric pressure, and relative humidity using data collected from Lagos, Nigeria. Power spectral density analysis revealed an aperiodic nature with possible non-linear processes governing the time series. Recurrence quantification analysis (RQA) was employed to quantify the determinism and chaoticity within the data. Results suggest that all three variables (relative humidity, air temperature, and atmospheric pressure) exhibit evidence of both deterministic and chaotic behaviour. Deterministic behavior was highest for air temperature, followed by pressure and then humidity. Conversely, chaoticity was highest for relative humidity, followed by pressure and then air temperature. These findings suggest complex underlying dynamics within the troposphere, potentially influenced by the region's convective nature and intense precipitation events. The observed determinism indicates some level of predictability, particularly for air temperature, while the chaoticity highlights the inherent complexity of atmospheric processes.

Downloads

Download data is not yet available.

Author Biography

Abidemi Emmanuel Adenij, University of Technology Ota, Ogun State.

Department of Physical Sciences, Bells

References

Adediji, A. T., & Ajewole, M. O. (2008). Vertical profile of radio refractivity gradient in Akure, South-West, Nigeria. Progress in Electromagnetics Research C, 4, 157–168.

Adediji, A. T., & Ogunjo, S. T. (2014). Variations in non-linearity in vertical distribution of microwave radio refractivity. Progress in Electromagnetics Research M, 36, 177–183.

Adelakun, A. O., Ojo, J. S., & Edward, O. V. (2020). Quantitative analyses of complexity and nonlinear trend of radio refractivity gradient in the troposphere. Advances in Space Research, 65(9), 2203–2215.

Adeniji, A. E., Olusola, O. I., & Njah, A. N. (2018). Comparative study of chaotic features in hourly wind speed using recurrence quantification analysis. AIP Advances, 8, 025102. https://doi.org/10.1063/1.4998674

Adeniji, A. E., Ajeigbe, E. M., & Ojo, K. S. (2021). Characterization and investigation of nonlinear behaviour of radio refractivity during the rainy and dry seasons in the coastal region of Nigeria. Journal of Applied Sciences & Environmental Management, 25(7), 1125–1131.

Abimbola, O. J., Bada, S. O., Falaiye, A. O., Sukam, Y. M., Otto, M. S., & Muhammad, S. (2021). Estimation of radio refractivity from satellite-derived meteorological data over a decade for West Africa. Scientific African, 14, 1054.

Agbazo, M., Koto Nogobi, G., Alamou, E., Kounouhewa, B., Afouda, A., & Kounkonnou. (2019). Multifractal behaviors of daily temperature time series observed over Benin synoptic stations (West Africa). Earth Science Research Journal, 23, 365–373.

Agbo, A. G., Okoro, N. O., & Amechi, O. A. (2003). Atmospheric refractivity over Abuja, Nigeria. International Research Journal of Pure and Applied Physics, 1(1), 37–45.

Amajama, J., Asagha, E. N., Ushie, O. J., Iwuji, P. C., Akwagiobe, J. U., Faithpraise, F. O., Ikeuba, A. I., & Bassey, D. E. (2023). Radio refractivity impact on signal strength of mobile communication. Journal of Electrical and Computer Engineering, 2023, Article ID 3052241. https://doi.org/10.1155/2023/3052241

Baranowski, P., Krzyszczak, J., Slawinski, C., Hoffmann, H., Kozyra, J., Nierobca, A., Siwek, K., & Gluza, A. (2015). Multi-fractal analysis of meteorological time series to assess climate impacts. Climate Research, 65, 39–52.

Bejoy, J. J., Dave, J., & Ambika, G. (2023). Multifractal and recurrence measures from meteorological data of climate zones in India. arXiv:2307.01165v2 [physics.ao-ph].

Bigdeli, N., & Lafmejani Sadegh, H. (2016). Dynamic characterization and predictability analysis of wind speed and wind power time series in Spain wind farm. Journal of AI and Data Mining, 4(1), 103–116.

da Silva, H. S., Silva, J. R. S., & Stosi, T. (2020). Multifractal analysis of air temperature in Brazil. Physica A: Statistical Mechanics and its Applications, 549, 124333.

Ding, H., Crozier, S., & Wilson, S. (2008). Optimization of Euclidean distance threshold in the application of recurrence quantification analysis to heart rate variability studies. Chaos, Solitons & Fractals, 38(5), 1457–1467. https://doi.org/10.1016/j.chaos.2008.02.013

Dong, X., Hu, J., Hu, C., Long, T., Li, Y., & Tian, Y. (2019). Modeling and quantitative analysis of tropospheric impact on inclined geosynchronous SAR imaging. Remote Sensing, 11(8), 803. https://doi.org/10.3390/rs11070803

Eckmann, J. P., Kamphorst, S., & Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters, 4, 973–977.

Eichie, J. O., Oyedum, O. D., Ajewole, M. O., & Aibinu, A. M. (2017). Artificial Neural Network model for the determination of GSM Rxlevel from atmospheric parameters. Engineering Science and Technology, an International Journal, 20(2), 795–804.

Elechi, P., & Otasowie, P. (2015). Determination of GSM signal penetration loss in some selected buildings in Rivers State, Nigeria. Nigerian Journal of Technology, 34(3), 609–615.

Enugonda, R., Anandan, V. K., & Ghosh, B. (2023). A new approach to atmospheric turbulence measurements using HOSE on radar backscattered echoes. Journal of Atmospheric and Solar-Terrestrial Physics, 243, 106023.

Familusi, T. O., Ewetumo, T., Adedayo, K. D., & Ojo, J. S. (2022). Assessment of radio refractivity and frequency modulated radio signal strength variability with time in broadcasting system using Osun State Broadcasting Cooperation (OSBC), FM 104.5 MHz as a reference station. International Journal of Innovative Science and Research Technology, 7(4), 1479–1489.

Fasona, M., Omojola, A., Odunuga, S., Tejuoso, O., & Amogu, N. (2005). An appraisal of sustainable water management solutions for large cities in developing countries through GIS: The case of Lagos, Nigeria. In Proceedings of the Symposium S2 Held during the 7th IAHS Scientific Assembly, Foz do Iguacu, Brazil, 3–9, 49–57.

Fraser, A. M., & Swinney, H. I. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33, 1134–1140.

Fuwape, I. A., Ogunjo, S. T., Oluyamo, S. S., & Rabiu, A. B. (2017). Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria. Theoretical and Applied Climatology, 130, 119–132. https://doi.org/10.1007/s00704-016-1867-x

Fuwape, I. A., & Ogunjo, S. T. (2016). Quantification of scaling exponents and dynamical complexity of microwave refractivity in a tropical climate. Journal of Atmospheric and Solar-Terrestrial Physics, 150–151, 61–68.

Garcia-Marin, P., Estevez, J., Alcalan-Miras, J. A., Morbidelli, R., Flammini, A., & Ayuso-Munoz, J. L. (2019). Multifractal analysis to study break points in temperature data sets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29, 093116.

Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena, 9, 189-208.

Guidara, A., Fersi, G., Derbel, F., & Jemaa, M. B. (2018). Impacts of temperature and humidity variations on RSSI in indoor wireless sensor networks. Procedia Computer Science, 126, 1072–1081.

Helhel, S., Ozen, S., & Goksu, H. (2008). Investigation of GSM signal variation against dry and wet earth effects. Progress in Electromagnetics Research B, 1, 147–157.

Herrera-Grimaldi, P., Garcia-Marin, A. P., & Estevez, J. (2019). Multifractal analysis of diurnal temperature range over southern Spain using validated datasets. Chaos, 29, 063105.

Igwe, K., Oyedum, O., Aibinu, A., Ajewole, M., & Moses, A. (2021). Application of artificial neural network modeling techniques to signal strength computation. Heliyon, 7(3), e06047–e06049.

Isikwe, C. B., Kwen, A. Y., & Chamegh, M. T. (2013). Variations in the tropospheric surface refractivity over Makurdi, Nigeria. Research Journal of Earth and Planetary Sciences, 3(2), 50–59.

Jacobson, M. Z. (1999). Fundamentals of Atmospheric Modeling. Cambridge University Press.

Joseph, A. (2016). Impact of temperature on UHF radio signal. International Journal of Engineering Research and General Science, 4(2), 619–622.

Joseph, A. (2016). Force of atmospheric humidity on (UHF) radio signal. International Journal of Scientific Research Engineering and Technology, 5(2), 56–59.

Kantz, H., & Schreiber, T. (1997). Nonlinear Time Series Analysis. University Press, Cambridge.

Karatasou, S., & Santamouris, M. (2018). Multifractal analysis of high-frequency temperature time series in the urban environment. Climate, 6, 50.

Kof, A. K., Gosset, M., Zahiri, E., Ochou, A. D., Kacou, M., Cazenave, F., & Assamoi, P. (2014). Evaluation of X-band polarimetric radar estimation of rainfall and rain drop size distribution parameters in West Africa. Atmospheric Research, 143, 438–461. DOI:10.1016/j.atmosres.2014.03.009

Kolmogorov, A. N. (1968). Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Physics-Uspekhi, 10, 734–746.

Krzyszczak, J., Baranowski, P., Zubik, M., Kazandjiev, V., Georgieva, V., Slawinski, C., Siwek, K., Kozyra, J., & Nierobca, A. (2019). Multifractal characterization and comparison of meteorological time series from two climatic zones. Theoretical and Applied Climatology, 137, 1811–1824.

Lana, X., Rodriguez-Sola, R., Martinez, M. D., Casas-Castillo, M. C., Serra, C., & Kirchner, R. (2020). Multifractal structure of the monthly rainfall regime in Catalonia (NE Spain): Evaluation of the non-linear structural complexity. Chaos, 30, 073117.

Majid, M. A., Noorani, M. S.M., & Razak, F.A. (2023). Nonlinear Dynamic Analysis of Meteorological Variables for Ha’il Region, Saudi Arabia, for the Period 1990-2022. FME Transactions, 51, 231-242.

Marwan, N., & Braun, T. (2023). Power spectral estimate for discrete data. Chaos, 33(5), 053118. https://doi.org/10.1063/5.0143224.

Matilla-García, M., Morales, I., Rodríguez,J.M., & Marín, M.R. (2021). Selection of Embedding Dimension and Delay Time in Phase Space Reconstruction via Symbolic Dynamics. Entropy, 23(2), 221. https://doi.org/10.3390/e23020221.

Ofure, E. J., David, O. O., Oludare, A. M., & Musa, A. A. (2017). Impact of some atmospheric parameters on GSM signals, 13th Int. Conf. Electron. Comput. Comput. ICECCO 2017.

Ogunjo, S. T., Ojo, J. S., Adediji, A. T., Adedayo, K. A., & Dada, J. B. (2013). Chaos in radio refractivity over Akure, South-Western Nigeria. In

th Annual Conference of the Nigeria Union of Radio Science (NURS), 56-63.

Ogunjo, S. T., Fuwape, I., & Rabiu, A. B. (2021). Multifractal analysis of air and soil temperatures. Chaos, 31, 033110.

Ojo, J. S., Adelakun, A. O., & Edward, O. V. (2019). Comparative study on Radio Refractivity Gradient in the troposphere using Chaotic Quantifiers. Heliyon, 5, e02083.

Okeke, N. B., Isaac-Onerime, O. S., Okoge, O. V., & Nuhu, A. T. (2019). Study of the radio refractivity over Akwa, South Eastern Nigeria using meteorological parameters on the troposphere during dry and wet seasons. IOSR Journal of Physics, 11, 2, pp. 62–67.

Sabu, S., Renimal, S., Abraham, D., & Premlet, B. (2017). A study on the effect of temperature on cellular signal strength quality. In Proceedings of the International Conference on Nextgen Electronic Technologies, pp. 38–41, Chennai, India.

Schinkel, S., Dimigen, O., & Marwan, N. (2008). Selection of recurrence threshold for signal detection. The European Physical Journal Special Topics, 164, 1, pp. 45–53. https://doi.org/10.1140/epjst/e2008-00833-5.

Serykh, I. V., & Sonechkin, D. M. (2019). Nonchaotic and globally synchronized short-term climatic variations and their origin. Theoretical and Applied Climatology, 137, 3-4, pp. 2639–2656. https://doi.org/10.1007/s00704-018-02761-0.

Takens, F. (1981). Dynamical systems and turbulence. Lecture notes in mathematics, Springer, London, 898, pp. , 366–381. Detecting strange attractors in turbulence.

Telesca, L., & Lovallo, M. (2011). Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the fisher - Shannon information plane. Journal of Statistical Mechanics: Theory and Experiment, P07001.

Timmer, J., Haussler. S., Lauk, M., & Lucking, C. H. (2000). Pathological tremors: deterministic chaos or nonlinear stochastic oscillators? Chaos, 10, 1, pp. 278-288.

Ukhurebor, K., & Umukoro, O. (2018). Influence of meteorological variables on UHF radio signal: recent findings for EBS, Benin City, South-South, Nigeria. IOP Conference Series: Earth and Environmental Science, 173,pp. 012017-012018.

Valsakumar, M.C., Satyanarayana, S.V.M., & Sridhar, V. (1997). Signature of chaos in power spectrum. PRAMANA- Journal of Physics, 48, 1, pp. 69-85.

Wallot, S., & Mønster, D. (2018). Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in MATLAB. Frontiers in Psychology, 9, 1679. https://doi.org/10.3389/fpsyg.2018.01679

Webber, C. L., & Zbilut, J. P. (2005). Recurrence quantification analysis. recurrence quantification analysis of nonlinear dynamical systems, pp. 27–94. http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp.

Willoughby, A. A., Adimula, I. A., & Sorunke, A. O. (2003). Characteristics of surface radio refractivity over Ilorin, Nigeria. Nigerian Journal of Physics, 15, 1, pp. 45-46.

Zbilut, J. P., Zaldivar-Comenges, J.-M., & Strozzi, F. (2002). Recurrence quantification based Lyapunov exponents for monitoring divergence in experimental data. Physics Letters A, 297, 3, pp. 173–181.

Downloads

Published

2024-05-08