A Deep Neural Network Approach for Cancer Types Classification Using Gene Selection
Keywords:
Deep Learning, Artificial intelligence Neural Network, Autoencoder, K-Nearest Neighbor, Deep Recurrent Neural NetworkAbstract
Florence Omada Ocheme, Hakeem Adewale Sulaimon and Adamu Abubakar Isah
Cancer classification research is one of the significant areas of exploration in the clinical field. Exact forecasting of various tumor types is an extraordinary challenge and giving an exact forecast will have incredible worth in giving better treatment to the patients. In recent years, many analysis-based investigations have led to the revelation of information on disease subtypes, that has generated high throughput innovations Lately, researchers have attempted to dissect a lot of microarray information for getting significant data that can be utilized in malignancy grouping. To accomplish this objective, one can utilize K-Nearest Neighbor, Neural Networks, Decision Tree, Support Vector a that would provide approaches needed to break down microarray information towards the choice of best separating quality called biomarker. These machine learning methodologies had the inherent ability to represent the time varying behavior of the underlying biological network that allows for a better representation of spatiotemporal input-output dependencies. Therefore, the exploitation of time series data regarding deep learning has to have become a valuable strategy for deciphering stochastic processes, such as gene expression and classification. Therefore, in this study, another intriguing strategy is introduced to improve the performance of neural networks utilizing deep autoencoder neural networks. This was accomplished through the choice of the first, relevant data, which was being extracted with a Deep Neural Network hidden layer used to train an autoencoder for the classification of the cancer malignancy based on the second stack autoencoder network. The outcome from the proposed experiment was evaluated with the current techniques. Overall, the proposed deep autoencoder accomplished classification accuracy of 99.2% as against the current Modified KNN and SVM which obtained 96.1% and 98.1% respectively.
Downloads
Published
Issue
Section
Similar Articles
- Aminu Ismaila, Abubakar Sadiq Aliyu, Yakub Viva Ibrahim, Evaluation of Gamma Radiation Dose Level in Mining Sites of Riruwai, Kano, Nigeria , Communication In Physical Sciences: Vol. 8 No. 1 (2022): VOLUME 8 ISSUE 1
- Aminu Ismaila, Abubakar Sadiq Aliyu , Yakub Viva Ibrahim, Evaluation of Gamma Radiation Dose Level in Mining Sites of Riruwai, Kano, Nigeria , Communication In Physical Sciences: Vol. 8 No. 1 (2022): VOLUME 8 ISSUE 1
- A. Mahmud, Ismail Muhammad, Sadiya Ibrahim, The Impact of Field Trip on the Retention and Academic Performance in Ecology, Among Secondary School Students in Zaria Local Government Area, Kaduna State , Communication In Physical Sciences: Vol. 8 No. 2 (2022): VOLUME 8 ISSUE 2
- C. Amos-Uhegbu, Aeromagnetic and Radiometric (Thorium) Data Interpretation for Kimberlite pipe(s) occurrence in Malumfashi North-Central Nigeria , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Olatunde Ayeomoni, Enhancing Data Provenance, Integrity, Security, and Trustworthiness in Distributed and Federated Multi-Cloud Computing Environments , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Edoise Areghan, From Data Breaches to Deepfakes: A Comprehensive Review of Evolving Cyber Threats and Online Risk Management , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Olawale Babatunde Olatinsu, Segun Opeyemi Olawusi, Mathew Osaretin Ogieva, Electrical Resistivity Characterization of Peat and Clay Profiles at a Suburb of Ota, Southwest Nigeria , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Joseph Amajama, Julius Ushie Akwagiobe, Efa Ubi Ikpi, Analyzing the Relationship between Atmospheric Pressure and Mobile Network Signal Strength in Southern Nigeria , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Olawale Babatunde Olatinsu, Segun Opeyemi Olawusi, Mathew Osaretin Ogieva, Electrical Resistivity Characterization of Peat and Clay Profiles at a Suburb of Ota, Southwest Nigeria , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Agada Livinus Emeka, Health Effects of Tropospheric Ozone in Maiduguri Metropolis, Nigeria , Communication In Physical Sciences: Vol. 8 No. 3 (2022): VOLUME 8 ISSUE 3
You may also start an advanced similarity search for this article.



