Development of Heterogeneous Catalyst from Waste Cow Bone Using Parinarium Macrophylum Seed Oil for Biodiesel Production
Keywords:
P. mcrophylum seed oil, waste cow bone, transesterification, ASTM standardAbstract
Abdulfatai Aideye Otori, Akeem Adebayo Jimoh, and John Tsado Mathew
The production of biodiesel from oil seeds as feedstock is gaining more attention for the purpose of having alternative fuels without interfering with the food chain. In this study, biodiesel was produced from oils extracted from the P. macrophylum feed, which served as a feedstock. The physicochemical properties of the extracted seed oil were characterized for % yield (45.0%), specific gravity (0.82), refractive index (0.92), pH (4.52), colour (brown), acid value (4.3), saponification (108), iodine value (110), peroxide value (5.3) and viscosity (6.7). The cow bones sample were crushed into fine powdered of size, 105 µm, and calcined at 500 0C. The calcined cow bone was characterized for TGA, XRF, XRD, BET, SEM, and IR. The optimization of the biodiesel production process parameters was done experimentally for the characterize seed oil extracted using the calcined calcium oxide catalyst obtained from the cow bone. The optimized parameters gave methanol to oil ratio (6:1), temperature (55 0C), catalyst concentration (1:8 wt%), reaction time (60 min) and agitation speed (350 rpm). The biodiesel yield for the optimized parameters ranged from 75 to 85%. The properties of the produced biodiesel were within the recommended biodiesel standards (ASTM 6751). The cloud point (-10.5 0C) of the produced biodiesel indicate that the product can be used in cold temperature region without blending. This study has revealed that P. macrophylum seed is a good feedstock for biodiesel production. Based on these findings, it is recommended that this plant should be domesticated.
Downloads
Published
Issue
Section
Similar Articles
- Richard Alexis Ukpe, Joint Effect of Ethanol Extract of Orange Peel and halides on the Inhibition of the Corrosion of Aluminum in 0.1 M HCl: An approach to Resource Recovery , Communication In Physical Sciences: Vol. 4 No. 1 (2019): VOLUME 4 ISSUE 1
- J. C. Nnaji, Heavy Metal Contamination Indices for oil spilled Agricultural Soils in three Local Government Areas of River State, Nigeria , Communication In Physical Sciences: Vol. 4 No. 1 (2019): VOLUME 4 ISSUE 1
- N. B. Essien, Sorghum Waste as an Efficient Adsorbent for the Removal of Zn2+and Cu2+ from Aqueous Medium , Communication In Physical Sciences: Vol. 5 No. 2 (2020): VOLUME 5 ISSUE 2
- Helen O. Chukwuemeka-okorie, Ifeanyi Otukere, Kovo Akpomie, Isotherm, Kinetic and thermodynamic investigation on the biosorptive removal of Pb (II) ion from solution onto biochar prepared from breadfruit seed hull , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Fabian James Umoren, Mfon Clement Utin, Resource Recovery from Maize Wastes; Synthesis and Characterization of Silicon Oxide Nanoparticles , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Joseph Jacob, Shinggu D. Yamta, Influence of Moisture Absorption on some Mechanical Properties of Groundnut Shell Powder Reinforced Waste LDPE Composites , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Samuel Awolumate, Aderonke Nana Agbo, Nutrient Retention and Feed Utilization Efficiency in Clarias gariepinus: The Role of Lysine and Methionine in Enhancing Protein Deposition and Reducing Nitrogen Waste , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Richard Alexis Ukpe, Joint effect of halides and Ethanol Extract of Sorghum on the Inhibition of the Corrosion of Aluminum in HCl , Communication In Physical Sciences: Vol. 4 No. 2 (2019): VOLUME 4 ISSUE 2
- A. Abdulazeez, Antioxidant Assay and Flavonoids of Rind and Seed of Citrullus lanatusl linn (Water Melon) , Communication In Physical Sciences: Vol. 5 No. 1 (2020): VOLUME 5 ISSUE 1
- Kabiru Usman, H. Abba, O. R. A. Iyun, Preparation and Characterization of African Star Apple Seed Shell (Chrysophyllum Africanum) For The Removal of Acid Red 9 , Communication In Physical Sciences: Vol. 8 No. 1 (2022): VOLUME 8 ISSUE 1
You may also start an advanced similarity search for this article.