First Principles Calculations of Structural, Electronic and Optical Properties of Nitrogen-Doped Titanium Dioxide for Solar Cells Application

Authors

  • Buhari Aminu Balesa Bauchi State University Gadau, Bauchi State Nigeria
  • Abdullahi Lawal Federal College of Education Zaria, P.M.B 1041, Zaria, Kaduna State Nigeria
  • Saddiq Abubakar Dalhatu Bauchi State University Gadau, Bauchi State Nigeria
  • Bala Idris Bauchi State University Gadau, Bauchi State Nigeria
  • Mustapha Bello Bauchi State University Gadau, Bauchi State Nigeria

Keywords:

TiO2, DFT, doping, nitrogen, solar cell

Abstract

Authors: Buhari Aminu Balesa, Abdullahi Lawal, Saddiq Abubakar Dalhatu ,Bala Idris and Mustapha Bello

Received: 24 September 2021/Accepted 29 November 2021

The dire requirement for less toxic, eco-friendly, cheaper, cost-effective, and efficient material for solar cell application has led to increasing focus on a range of different source materials. In particular, the larger energy bandgap in TiO2 has limited its application for solar cell applications. However, doping TiO2 with non-metal such as N gives a broader absorption at the visible region and subsequently adjusts the bandgap, which allows better utilization of the solar spectrum. However, to exploit its potentials, a detailed analysis of structural, electronic, and optical properties of N doped TiO2 is necessary. In this work, first-principles calculations within the density functional theory (DFT) are carried out as an approach to address the problem. The calculated band gap energy for pure TiO2 (2.30 eV) was in strong agreement with the experimental value.  The substitution of nitrogen (N) atom in the TiO2 at the oxygen (O) and titanium (Ti) sites led to the reduction in the energy gap and the observation was also in good agreement with results from previous works. Our findings confirmed that non-metal doping narrows the energy band gap of semiconductor materials. The optical gap of 1.63 and 0.32 eV for N doped TiO2 at oxygen (O) and titanium (Ti) sites, which indicated that N-dopedTiO2 can be used to detect light in the near infrared and visible light regions. Direct energy gap, narrowing effects, and strong light absorption of N-doped TiO2 in the near infrared to visible light region suggest that the investigated material is most likely suitable for solar cells and near-infrared optoelectronic applications

Downloads

Download data is not yet available.

Author Biographies

Buhari Aminu Balesa, Bauchi State University Gadau, Bauchi State Nigeria

Department of Physics, Faculty of Science

Abdullahi Lawal, Federal College of Education Zaria, P.M.B 1041, Zaria, Kaduna State Nigeria

Department of Physics

Saddiq Abubakar Dalhatu, Bauchi State University Gadau, Bauchi State Nigeria

Department of Physics, Faculty of Science

Bala Idris, Bauchi State University Gadau, Bauchi State Nigeria

Department of Physics, Faculty of Science

Mustapha Bello, Bauchi State University Gadau, Bauchi State Nigeria

Department of Physics, Faculty of Science

References

Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293, pp. 269-271.

Avram, D., Patrascu, A. A., Istrate, M. C., Cojocaru, B. & Tiseanu, C. 2021. Lanthanide doped TiO2: Coexistence of discrete and continuous dopant distribution in anatase phase. Journal of Alloys and Compounds, 851,156849,https://doi.org/10.1016/j.jallcom.2020.156849

Baizaee, S. M. & N.Mousavi 2009. First-principles study of the electronic and optical properties of rutile TiO2. Physica B, 404, pp. 2111-2116.

Barhoumi, M. & Said, M. 2020. Correction of band-gap energy and dielectric function of BiOX bulk with GW and BSE. Optik, 164631,https://doi.org/10.1016/j.ijleo.2020.164631.

Becke, A. D. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098, https://doi.org/10.1103/PhysRevA.38. 3098

Beltran', A., Sambrano, J. R., Sensato, M. C. R. & Andres', J. 2001. Static simulation of bulk and selected surfaces of anatase TiO2. Surface Science, 490, 1, 2, pp. 116-124,.

Butt, F. K., Li, C., Haq, B. U., Tariq, Z. & Aleem, F. (2018). First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices. Frontiers of Physics, 13, 137805, https://doi.org /10.1007/s11467-018-0790-2.

Cerdán-Pasarán,A., López-Luke, T., Mathew, X. & Mathews, N. R. 2019. Effect of cobalt doping on the device properties of Sb2S3-sensitized TiO2 solar cells. Solar Energy, 183, pp. 697-703.

Dash, D., Pandey, C. K., Chaudhury, S. & Tripathy, S. K. 2018. Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study. Chinese Physics B, 27, 017102,https://doi.org/10.1088/16741056/27/1/017102 .

Dixit, H. 2012. First-principles electronic structure calculations of transparent conducting oxide materials. PhD, Universiteit Antwerpen.

Duan, T., Liao, C., Chen, T., Yu, N., Liu, Y., Yin, H., Xiong, Z.-J. & Zhu, M.-Q. 2015. Single crystalline nitrogen-doped InP nanowires for low-voltage field-effect transistors and photodetectors on rigid silicon and flexible mica substrates. Nano Energy, 15, pp. 293-302.

Gerward, L. & Olsen, J. S. 1997. Post-Rutile High-Pressure Phases in TiO2. Journal of Applied Crystallography., 30,3, pp. 259-264.

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M. & Dabo, I. 2009.

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21, 395502, https://doi.org/10.1088/09538984/21/39/395502

Han, Z., Qi, Y., Yang, Z., Han, H., Jiang, Y., Du, W., Zhang, X., Zhang, J., Dai, Z. & Wu, L. 2020. Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. Journal of Materials Chemistry C, 8, pp. 13169-13188.

Hitosugi, T., Yamada, N., Nakao, S., Hirose, Y. & Hasegawa, T. 2010. Properties of TiO2-based transparent conducting oxides. Phys. Status Solidi A, 207, pp. 1529-1537.

Jaćimović, J., Vâju, C., Gaál, R., Magrez, A., Berger, H. & Forró, L. 2010. High-Pressure Study of Anatase TiO2. Materials, 3,3, pp.1509-1514.

Jiang, C., Tang, R., Wang, X., Ju, H., Chen, G. & Chen, T. 2019. Alkali Metals Doping for High‐Performance Planar Heterojunction Sb2S3 Solar Cells. Solar RRL, 3, 1800272, https://doi.org/10.1002/solr.201800272.

Lawal, A. 2017. Theoretical study of structural, electronic and optical properties of bismuth-selenide, bismuth-telluride and antimony-telluride/graphene Heterostructure for Broadband Photodetector. Universiti TeknologiMalaysia,http://eprints.utm.my/id/eprint/79206/1/AbdullahiLawalPFS2017.pdf

Lawal, A., Shaari, A., Ahmed, R. & Jarkoni, N. 2017. First-principles many-body comparative study of Bi2Se3 crystal: A promising candidate for broadband photodetector. Physics Letters A, 381, pp. 2993-2999.

Lawal, A., Shaari, A., Ahmed, R. & Taura, L. 2018. Investigation of excitonic states effects on optoelectronic properties of Sb2Se3 crystal for broadband photo-detector by highly accurate first-principles approach. Current Applied Physics, 18, pp. 567-575.

Lawal, A., Shaari, A., Taura, L., Radzwan, A., Idris, M. & Madugu, M. 2021. G0W0 plus BSE calculations of quasiparticle band structure and optical properties of nitrogen-doped antimony trisulfide for near infrared optoelectronic and solar cells application. Materials Science in Semiconductor Processing,124,105592,https://doi.org/10.1016/j.mssp.2020.105592 .

Li, S., Yang, Y., Su, Q., Liu, X., Zhao, H., Zhao, Z., Li, J. & Jin, C. 2019. Synthesis and photocatalytic activity of transition metal and rare earth element co-doped TiO2 nano particles. Materials Letters, 252, pp. 123-125.

Luciana Fernández-Werner, Ricardo Faccio, Helena Pardo & Mombrú, Á. W. 2011. Electronic structure study of TiO2 polymorphs, evaluation of formic acid adsorption on dry (001) and (100) TiO2(B) facets by DFT calculations. Nanotechnology, https://arxiv.org/abs/1108.2721.

M Landmann, Rauls, E. & Schmidt, W. G. 2012. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens.Matter,24,19,195503,https://doi.org/10.1088/0953-8984/24/19/195503.

Maduraiveeran, G., Sasidharan, M. & Jin, W. 2019. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science, 106, pp. 100574.

Marini, A., Hogan, C., Grüning, M. & Varsano, D. 2009. Yambo: an ab initio tool for excited state calculations. Computer Physics Communications, 180, pp. 1392-1403.

Marsili, M., Mosconi, E., De Angelis, F. & Umari, P. 2016. Large scale GW-BSE calculations with N3 scaling: excitonic effects in dye sensitised solar cells. Physical ReviewB,95,7,075415,https://doi.org/10.1103/PhysRevB.95.075415.

Mikami, M., Nakamura, S., Kitao, O., Arakawa, H. & Gonze, X. 2000. First-Principles Study of Titanium Dioxide: Rutile and Anatase. Japanese Journal of Applied Physics, 39(8B),L847,https://doi.org/10.1143/JJAP.39.L847.

Monkhorst, H. J. & Pack, J. D. 1976. Special points for Brillouin-zone integrations. PhysicalreviewB,13,5188,https://doi.org/10.1103/PhysRevB.13.5188.

Mushtaq, S., Ismail, B., Raheel, M. & Zeb, A. 2016. Nickel antimony sulphide thin films for solar cell application: study of optical constants. Natural Science, 8, pp. 33-40.

Perdew, J. P., Burke, K. & Ernzerhof, M. 1996a. Generalized gradient approximation made simple. Physical review letters, 77, 3865, https://doi.org/10.1103/PhysRevLett.77.3865.

Perdew, J. P., Burke, K. & Wang, Y. 1996b. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B, 54, 16533, https://doi.org/10.1103/PhysRevB.54.16533.

Piątkowska, A., Janus, M., Szymański, K. & Mozia, S. 2021. C-, N-and S-Doped TiO2 Photocatalysts: A Review. Catalysts, 11, 144, https://doi.org/10.3390/catal11010144.

Radzwan, A., Ahmed, R., Shaari, A., Ng, Y. X. & Lawal, A. 2018. First-principles calculations of the stibnite at the level of modified Becke–Johnson exchange potential. Chinese Journal of Physics, 56, pp. 1331-1344.

Radzwan, A., Lawal, A., Shaari, A., Chiromawa, I. M., Ahams, S. T. & Ahmed, R. 2020. First-principles calculations of structural, electronic, and optical properties for Ni-doped Sb2S3. Computational CondensedMatter,24,e00477,https://doi.org/10.1016/j.cocom.2020.e00477.

Reisner, D. E. & Pradeep, T. 2014. Aquananotechnology: global prospects, CRCPress,https://books.google.com.ng/books?hl=en&lr=&id=UpstaU6fAJwC&oi.

Reyes-Coronado, D., Rodriguez-Gattorno, G., Espinosa-Pesqueira, M. E., Cab, C., Coss, R. D. & Oskam, G. 2008. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology,19,14,145605,https://doi.org/10.1088/0957-4484/19/14/145605.

Sai, G. & Bang-Gui, L. 2012. Electronic structures and optical properties of TiO2: Improveddensity-functional-theory investigation*. Chin. Phys. B, 21(5), 057104, https://doi.org/10.1088/16741056/21/5/057104.

Sangalli, D., Ferretti, A., Miranda, H., Attaccalite, C., Marri, I., Cannuccia, E., Melo, P., Marsili, M., Paleari, F. & Marrazzo, A. 2019. Many-body perturbation theory calculations using the yambo code. J. Phys.: Condens.Matter,31,32,325902,https://doi.org/10.1088/1361-648X/ab15d0.

Thilagam, A., Simpson, D. J. & Gerson, A. R. 2011. A first-principles study of the dielectric properties of TiO2 polymorphs. J. Phys.: Condens.Matter,23,2,025901,https://doi.org/10.1088/0953-8984/23/2/025901.

Tseng, L.-T., Luo, X., Bao, N., Ding, J., Li, S. & Yi, J. 2016. Structures and properties of transition-metal-doped TiO2 nanorods. Materials Letters, 170, pp. 142-146.

Wagemaker, M., Kentgens, A. P. M. & Mulder, F. M. 2002. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature Materials, 418, 6896, pp. 397-399.

Wang, S., Fang, Y., Wang, X. & Lou, X. W. 2019. Hierarchical Microboxes Constructed by SnS Nanoplates Coated with Nitrogen‐Doped Carbon for Efficient Sodium Storage. Angewandte Chemie, 131, pp. 770-773.

Wang, Z., Sun, R., Chen, C., Saito, M., Tsukimoto, S. & Ikuhara, Y. 2012. Structural and electronic impact of SrTiO3 substrate on TiO2 thin films. J Mater Sci, 47,13, pp. 5148-5157.

Xing-Gang, H., An-Dong, L., Mei-Dong, H., Bin, L. & Xiao-Ling, W. 2009. First-Principles Band Calculations on Electronic Structures of Ag-Doped Rutile and Anatase TiO2. Chin. Phys. Lett., 26,7,077106, https://doi.org/10.1088/0256-307X/26/7/077106.

Yang, C.-T., Balakrishnan, N., Bhethanabotla, V. R. & Joseph, B. 2014. Interplay between Subnanometer Ag and Pt Clusters and Anatase TiO2 (101) Surface: Implications for Catalysis and Photocatalysis. J Physical Chemistry C, 118, pp. 4702-4714.

Downloads

Published

2021-10-15