Fast Interpolating Spline for Diurnal Temperature Patterns


  • Uchechi Ezere University of Agriculture, Umudike, Abia State
  • Chijioke Oriaku Michael Okpara University of Agriculture, Umudike, Abia State
  • Ozochi Akwuegbu Michael Okpara University of Agriculture, Umudike, Abia State


Diurnal temperature, interpolation, cubic spline


Authors: Uchechi Ezere, Chijioke Oriaku and Ozochi Akwuegbu

Received: 22 May 2022/Accepted24 August 2022

The monthly maximum and minimum data describing monthly variation in temperature in the city of Owerribetween 2010 and 2019 were collected and applied for the evaluation of the diurnal temperature range (DTR). The results were useful for the derivation of models for the prediction of the amount of DTR for subsequent months through interpolation analysis of DTR change. The best-fitted model was the cubic spline interpolation model and was used to interpolate between known data points due to its stable and smooth characteristics for the intervals in the selected years. The month of June 2010 and 2019 was left missing and interpolated with percentage error results of 2.0444% and 12.2694% respectively. The study revealed that the interpolated results were consistent with the yearly data while the observed percentage error fell in a good and commendable range


Download data is not yet available.


Abatan, A.A., Osayomi, T., Akande, S.O., Abiodun, B.J. & Gutowski, W.J. (2018). Trends in mean and extreme temperatures over Ibadan, Southwest Nigeria. Theoretical and Applied Climatology,pp-131(3-4), pp. 1261-1272

Chen, S.; Hu, X.; Peng, S.; Zhou, Z.2014 Denoising of hyperspectral imagery by cubic smoothing spline in the wavelet domain. High Technol. Lett., pp. 20, 54–62.

Ding, Z., Y. Wang, &Lu. R(2018). An Analysis of Changes in Temperature Extremes in the Three River Headwaters Region of the Tibetan Plateau during 1961–2016. Atmospheric Research 209: pp. 103–114. doi:10.1016/j.atmosres.2018.04.003.

Easterling, D. R., DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, (1997), Maximum and minimum temperature trends for the globe, Science,pp- 277, 364–367.

Feng, G.(1998) Data smoothing by cubic spline filters. IEEE T. Signal Proces.,46, pp.2790–2796.

Ferrer-Arnau, L.; Reig-Bolaño, R.; Marti-Puig, P.; Manjabacas, A.; Parisi-Baradad, V. (2013) Efficient cubic spline interpolation implemented with FIR filters. Int. J. Comput. Inf. Syst. Ind. Manag. Appl.,5, pp. 98-105.

Gil-Alana, L.A. (2018).Maximum and minimum temperatures in the United States: Time trends and persistence. Atmospheric Science Letters, 19: e810. DOI:10.1002/asl.810

Graham, N.Y.(1983) Smoothing with periodic cubic splines. Bell Syst. Tech. J.,62, pp.101-110.

Hou, H.&. Andrews, H. (1978)Cubic splines for image interpolation and digital filtering. IEEE T. Acoust. Speech., 26, pp.508–517.

Jackson, O. I., Isienyi, N. C.,Osudiala, C.S.,Odofin, B. J.,Adeyemi, A. A.,Odeleye, O. A.,&Amoo, V. O. (2012). Analysis of temperature trends of Ibadan, Nigeria over the period of 1965-2012. Journal of Forest Reserve and Management., 9, pp. 61-72.

Kalnay E. & Cai M. (2003). Impact of urbanization and land-use change on climate. Nature.423(6939): pp.528–531.

Karl, T.R., Kukla, G., Razuvayev, V.N., Changery, M.J., Quayle, R.G., Heim, R. R, Easterling, D.R.&Fu, C. B.(1991). Global warming: evidence for asymmetric diurnal temperature change. Geophys Res Lett.18(12): pp.2253–2256.

Karl, T. R., P. D. Jones, R.W. Knight, G. Kukla, N. Plummer, V. Razuvayev,K. P. Gallo, J. Lindseay, R. J. Charlson, & T. C. Peterson (1993) Asymmetric trends of daily maximum and minimum temperature, Bull. Am. Meteorol. Soc.,74, pp. 1007– 1023.

Mao, F., Li, X., Du, H., Zhou, G., Han, N., Xu, X., Liu, Y., Chen, L & Cui, L. (2017) Comparison of two data assimilation methods for improving MODIS LAI time series for bamboo forests. Remote Sens., 9, Iss.5, 401. DOI:10.3390/rs9050401

New, M., Hulme., & Jones, P.D., (2000), Representing twentieth-century space-time climate variability. Part II: Development of 1901 – 1996 monthly grids of terrestrial surface climate, J. Clim.,13, pp.2217– 2238.

Singh, R.K., Liu, S.,Tieszen, L.L.,Suyker, A.E.& Verma, S.B. (2012). Estimating seasonal evapotranspiration from temporal satellite images. Irrig. Sci., 30, pp. 303–313.

Smith, R.E., Price, J. M. and Howser, L. M. (1974)A Smoothing algorithm using cubic Splinefunctions; Technical note:NASA TN D-7397; National Aeronautics and Space Administration (NASA):Washington, DC, USA,.

Victor, D., Zhaohui, L., Yuxi, W & Hyacinth, N (2019):Observed trends in diurnal temperature range over Nigeria.Atmospheric and Oceanic Science Letters, DOI:10.1080/16742834.2019.1570688

Vose, R. S., Easterling, D. R.and Gleason, B. (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett., 32:L23822. doi:10.1029/2005GL024379

Wahba, G.(1990). Spline models for observational data; cbms-nsf regional conference series in applied mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA,; pp. 1–20.

Wang, F., Zhang C.,, Peng Y.,, & Zhou, H. (2014). “Diurnal Temperature Range Variation and Its Causes in a Semiarid Region from 1957 to 2006.” International Journal of Climatology 34 (2): pp- 343–354. doi:10.1002/joc.2014.34.issue-2.

Wüst, S., Wendt, V., Linz, R.& Bittner, M.(2017), Smoothing data series by means of cubic splines: Quality of approximation and introduction of a repeating spline approach. Atmos. Meas. Tech. 10, pp. 3453–3462.

You, Q., Min, J., Yang, S., Mika, & Shichang, K. (2016).Observed trend of diurnal temperature range in the tibetan plateau in recent decades. International Journal of Climatology, 6, pp. 2633–2643. doi:10.1002/joc.4517.

Yu, G., Di, L.; Yang, Z., Chen, Z.& Zhang, B. (2012)Crop condition assessment using high temporal resolutionsatellite images. In Proceedings of the 2012First International Conference on Agro-Geoinformatics, Shanghai,China, 2–4 August.

Zhang, H., Pu, R. & Liu, X. (2016) A New Image Processing Procedure Integrating PCI-RPC and ArcGIS-Spline Tools to Improve the Orthorectification Accuracy of High-Resolution Satellite Imagery. Remote Sens., 8, 827. DOI:10.3390/rs8100827