Thermal Properties of Diffusing Species into Some Host Metals
DOI:
https://doi.org/10.4314/detsf785Keywords:
Spherical coordinate, host metals, partition function, Frobenius methodAbstract
The study rigorously explored the thermodynamic properties of diffusing species by solving the spherical coordinate equation using the Frobenius method. This mathematical approach enabled the derivation of the partition function and energy equation, which were crucial in determining key thermal properties, including Helmholtz free energy, entropy, internal energy, and heat capacity. It was observed that internal energy and entropy exhibited a strong dependence on temperature, reflecting the dynamic nature of diffusing species in varying thermal environments. The findings provide valuable insights into the behavior of entropy within the classical domain, with both analytical expressions and graphical representations used to illustrate these thermal properties comprehensively. The graphical analysis highlighted the temperature-dependent trends and the critical points where classical and quantum mechanical effects influence the thermodynamic behavior of the system, offering a deeper understanding of the underlying physics.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Akaezue Nelson Nwagbogwu, Ngiangia Alalibor Thompson, Onyeaju Michael Chukwudi, Thermal Properties of Diffusing Species into Some Host Metals , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
Similar Articles
- Edikan E. Akpanibah, Optimization of investment strategies for a Defined Contribution (DC) plan member with Couple Risky Assets, Tax and Proportional Administrative Fee , Communication In Physical Sciences: Vol. 7 No. 1 (2021): VOLUME 7 ISSUE 1
- Etido P. Inyang, Joseph E. Ntibi, Efiong A. Ibanga, Funmilayo Ayedun, Ephraim P. Inyang, Etebong E. Ibekwe, Eddy S. William, Ita O. Akpan, Thermodynamic properties and mass spectra of a quarkonium system with Ultra Generalized Exponential–Hyperbolic Potential , Communication In Physical Sciences: Vol. 7 No. 2 (2021): VOLUME 7 ISSUE 2
- Abdulmuahymin Abiola Sanusi, Sani Ibrahim Doguwa, Abubakar Yahaya, Yakubu Mamman Baraya, Topp Leone Exponential – Generalized Inverted Exponential Distribution Properties and Application , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Olalekan Akanji Bello, Sani Ibrahim Doguwa, Abubakar Yahaya, Haruna Mohammed Jibril , A Type I Half Logistic Exponentiated-G Family of Distributions: Properties and Application , Communication In Physical Sciences: Vol. 7 No. 3 (2021): VOLUME 7 ISSUE 3
- Gulumbe S. Usman, Umar Usman, Aremu Kazeem Olalekan, Odeyale, Abideen Babatunde , The Generalized Odd Generalized Exponential Gompertz Distribution with Applications , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Ugwuowo, Fidelis Ifeanyi, Use of Discriminant Analysis in Time Series Model Selection , Communication In Physical Sciences: Vol. 3 No. 1 (2018): VOLUME 3 ISSUE 1
- Udechukwu P. Egbuhuzor, Nonlinear Dynamic Buckling Behaviour of Viscously Damped Columns on Elastic Foundations Under Step Loading , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
- Promise. A. Azor, Amadi Ugwulo Chinyere, Mathematical Modelling of an Investor’s Wealth with Different Stochastic Volatility Models , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Yusuf James, Yisa Jonathan, Jimoh Oladejo Tijani, Razak Bolakale Salau, Elijah Yanda Shaba , Mr. , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Okoche K. Amadi, Uloma O. Akoh, Innocent A. Okoro, Egwuobasi Nwabuokechi,, Decontamination of Pb2+, Cd2+ and Ni2+ Polluted Water by Adsorption Unto Butterfly Pea (Centrosema pubescens) Seed Pod , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
You may also start an advanced similarity search for this article.



