Thermal Properties of Diffusing Species into Some Host Metals
DOI:
https://doi.org/10.4314/detsf785Keywords:
Spherical coordinate, host metals, partition function, Frobenius methodAbstract
The study rigorously explored the thermodynamic properties of diffusing species by solving the spherical coordinate equation using the Frobenius method. This mathematical approach enabled the derivation of the partition function and energy equation, which were crucial in determining key thermal properties, including Helmholtz free energy, entropy, internal energy, and heat capacity. It was observed that internal energy and entropy exhibited a strong dependence on temperature, reflecting the dynamic nature of diffusing species in varying thermal environments. The findings provide valuable insights into the behavior of entropy within the classical domain, with both analytical expressions and graphical representations used to illustrate these thermal properties comprehensively. The graphical analysis highlighted the temperature-dependent trends and the critical points where classical and quantum mechanical effects influence the thermodynamic behavior of the system, offering a deeper understanding of the underlying physics.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Akaezue Nelson Nwagbogwu, Ngiangia Alalibor Thompson, Onyeaju Michael Chukwudi, Thermal Properties of Diffusing Species into Some Host Metals , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
Similar Articles
- Ugwuanyi Sunday C., Nwanmadu Chukwuebuka E*, Kenneth C. Ugwu*, Nweze Rosemary Chika*, Automated Hostel Allocation System In State University of Medical And Applied Sciences (SUMAS) Igbo-Eno, Enugu State Using E-Commerce. , Communication In Physical Sciences: Vol. 12 No. 8 (2025): Volume 12 Issue 8
- Monday Musah, Hauwa I. Muhammad, John T. Mathew, Yakubu Azeh, Musa T. Umar, Proximate, Minerals and Functional Properties of Bombax buonopozense Cclyx , Communication In Physical Sciences: Vol. 7 No. 2 (2021): VOLUME 7 ISSUE 2
- N. S. Akpan, Compatibility Study of Polystyrene and Poly Methyl-methacrylate Blends using FTIR and Viscometry Methods , Communication In Physical Sciences: Vol. 4 No. 2 (2019): VOLUME 4 ISSUE 2
- Joy Nnenna Okolo, A Systematic Analysis of Artificial Intelligence and Data Science Integration for Proactive Cyber Defense: Exploring Methods, Implementation Obstacles, Emerging Innovations, and Future Security Prospects , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Emeka Chima Ogoko, Henrietta Ijeoma Kelle, Abdullahi Hadiza Ari, Nnabuk Eddy, Synthesis of Na–O Functionalized Silicon Quantum Dots from Waste Coconut Shells: Structural Characterization, Optical Properties, and Application for theAdsorption Remediation of Textile Wastewater , Communication In Physical Sciences: Vol. 12 No. 8 (2025): Volume 12 Issue 8
- Isaac Chukwutem Abiodun, Monday Edward Edem, Obasesam Ebri Agbor, Investigation of the Structural and electronic properties of Ternary AB₂X₄ based material via Density Functional Theory (DFT) for Optoelectronic Applications , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Efe Jessa, Soil Stabilization Using Bio-Enzymes: A Sustainable Alternative to Traditional Methods , Communication In Physical Sciences: Vol. 2 No. 1 (2017): VOLUME 2 ISSUE 1
- Nsikak S. Akpan, Comparative Study of Blends of Polyvinyl Chloride/Poly Methyl-methacrylate and Polystyrene/Poly Methyl-methacrylate using Density, Viscometry and FTIR Methods , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- John Paul Shinggu, Emmanuel Edet Etim, Alfred Ikpi Onen, Quantum Chemical Studies on C2H2O Isomeric Species: Astrophysical Implications, and Comparison of Methods , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- Bayode Adeyanju, Development and Application of a Novel Bi-functional Heat Treatment Furnace: A Review , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
You may also start an advanced similarity search for this article.



