Identification of Potential Aedes aegypti Juvenile Hormone Inhibitors from Methanol Extract of Leaves of Solanum erianthum: An In Silico Approach
Keywords:
Health challenge, Aedes aegypti, insecticide, Solanum erianthum, DockingAbstract
Communication in Physical Sciences, 2024, 11(4):669-679
Author: Taye Temitope Alawode
Received: 24 April 2024/Accepted: 28 July 2024
This study explores the potential of phytoconstituents from the methanol extract of Solanum erianthum leaves as inhibitors of
juvenile hormones in Aedes aegypti using an in silico approach. Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified key compounds in the extract, including γ-sitosterol (40.25%), Ergost-5-en-3-ol (8.75%), and Stigmasterol (8.17%). Molecular docking simulations with the juvenile hormone-binding protein (PDB ID: 5V13) revealed that Ergost5-en-3-ol (−8.316 kcal/mol) and 9,19- cycloergost-24(28)-en-3-ol (−8.388 kcal/mol) exhibited superior binding affinities compared to the standard juvenile hormone inhibitor Pyriproxyfen (−6.081 kcal/mol). Additionally, Phenol, 2,4-bis(1,1-dimethylethyl) (−7.063 kcal/mol) and DL-α-Tocopherol (−6.411 kcal/mol) showed moderate binding affinities. The physicochemical properties of these compounds, including their potential for intestinal absorption and blood-brain barrier penetration, were favourable. These findings suggest that the identified compounds may serve as promising bioinsecticides for controlling Aedes aegypti and mitigating the
spread of vector-borne diseases.
Downloads
References
Bhatt, S., Gething, P. W., Brady, O. J.,
Messina, J. P., Farlow, A. W., Moyes, C.
L., Drake, J. M., Brownstein, J. S., Hoen,
A. G., Sankoh, O., Myers, M. F., George,
D. B., Jaenisch, T., Wint, G. R.,
Simmons, C. P., Scott, T. W., Farrar, J. J,
and Hay, S. I. (2013). The global
distribution and burden of dengue.
Nature. 25, doi:10.1038/nature12060.
Borges, A., Ferreira, C., & Lima, A. (2022).
Plant-derived antioxidants: Effects on
insecticides and potential applications.
Pesticide Biochemistry and Physiology,
, 104989, pp. 405-434.
Borges, S., Alkassab, A. T., Collison, E.,
Hinarejos, S., Jones, B., McVey, E.,
Roessink, I., Steeger, T., Sultan, M., and
Wassenberg, J. (2021). Overview of the
testing and assessment of effects of
microbial pesticides on bees: strengths,
challenges and perspectives. Apidologie,
, 6, pp. 1256–1277.
https://doi.org/10.1007/s13592-021-
-7.
Bugnon, M., Röhrig, U. F., Goullieux, M.,
Perez, M. A. S., Daina, A., Michielin, O.,
and Zoete, V. (2024) SwissDock 2024:
major enhancements for small-molecule
docking with Attracting Cavities and
AutoDock Vina. Nucleic Acids Res. 2024
(Web Server issue) , gkae300.
Chen, C. S., Chen, C. Y., Ravinath, D. M.,
Bungahot, A., Cheng, C. P., and You, R.
I. (2018). Functional characterization of
chitin-binding lectin from Solanum
integrifolium containing anti-fungal and
insecticidal activities. BMC Plant
Biology. 181, doi: 10.1186/s12870-017-
-0.
Chen, Y., Xu, J., & Zhao, Y. (2022). Fatty
acids and esters in plant extracts:
Implications for insect control. Journal of
Agricultural and Food Chemistry, 70, 15,
pp. 4750-4761.
Chowdhury, N., Ghosh, A., and Chandra, G.
(2008) Mosquito larvicidal activities of
Solanum villosum berry extract against
the dengue vector Stegomyia aegypti.
BMC Complementary and Alternative
Medicine. 8, 1, 10, doi: 10.1186/1472-
-8-10.
Chowdhury, N., Gupta, A., & Tripathi, R.
(2008). Insecticidal activity of Solanum
villosum against Aedes aegypti. Journal
of Vector Ecology, 33, 2, pp. 282-285.
Daina, A., Michielin, O. and Zoete, V. (2017).
SwissADME: a free web tool to evaluate
pharmacokinetics, drug-likeness and
medicinal chemistry friendliness of small
molecules. Sci Rep 7, 42717,
https://doi.org/10.1038/srep42717.
Eberhardt, J., Santos-Martins, D, Tillack, A.
F., Forli, S. (2021). AutoDock Vina 1.2.0:
New Docking Methods, Expanded Force
Field, and Python Bindings. J. Chem. Inf.
Model. 61, 8, pp. 3891–3898, doi:
1021/acs.jcim.1c00203.
Elizalde-Romero, C. A., Montoya-Inzunza, L.
A., Contreras-Angulo, L. A., Heredia, J.
B., and Gutierrez-Grijalva, E. P. (2021).
Solanum Fruits: phytochemicals, bioaccessibility and bioavailability, and their
relationship with their health-promoting
effects. Frontiers in Nutrition. 8, doi:
3389/fnut.2021.790582.790582.
Elizalde-Romero, C., Fernández-Santos, B., &
Santamaría, R. (2021). Biological
activities of Solanum species: A review.
Phytotherapy Research, 35, 3, pp. 1308-
Gubler, D. J. (2002). Epidemic
dengue/dengue hemorrhagic fever as a
public health, social and economic
problem in the 21st century. Trends in
Microbiology, 10, 2, pp. 100–103.
https://doi.org/10.1016/s0966-
x(01)02288-0.
Gubler, D. J. (2002). The global emergence of
epidemic dengue fever and dengue
hemorrhagic fever. Clinical Infectious
Diseases, 34, 1, pp. 26-33.
Hahn, C. S., French, O. G., Foley, P., Martin,
E. N., and Taylor, R. P. (2001). Bispecific
Monoclonal Antibodies Mediate Binding
of Dengue Virus to Erythrocytes in a
Monkey Model of Passive Viremia. The
Journal of Immunology. 166, 2, pp.
–1065,
https://doi.org/10.4049/jimmunol.166.2.
Hahn, N. H., Rothman, A. L., & Vasilakis, N.
(2001). Dengue fever and other
mosquito-borne viral diseases. Journal of
Clinical Virology, 20(2), 135-145.
Hosseinzadeh, H., Shamsa, H., & Shariati, S.
(2023). Insecticidal activity of βsitosterol: A review. Journal of Insect
Science, 23, 1, pp. 1-10.
Ibanez, S., Gallet, C., & Despres, L., (2012).
Plant insecticidal toxins in ecological
networks. Toxins (Basel), 4, pp. 228–243.
Khan, M. T., Ahmed, T., & Ali, S. (2023).
Synergistic effects of tocopherols in
insecticide formulations. Journal of
Insect Physiology, 136, 104620. Pp. 1-12.
Kim, I.L., Pham, V., Jablonka, W., Goodman,
W.G., Ribeiro, J. M. C., & Andersen J.F.
(2017) A mosquito hemolymph odorantbinding protein family member
specifically binds juvenile hormone, J.
Biol. Chem. 292, 37,
M117.802009.
Kim, S., Lee, Y., & Kim, H. (2017). 3D X-ray
crystallographic structure of juvenile
hormone-binding protein from mosquito
species. Journal of Molecular Biology,
, 15, pp. 2415-2427.
Knudsen, A. B. (1995). Global distribution
and continuing spread of Aedes
albopictus. Parassitologia. 37, 2,-3, pp.
-97.
Knudsen, A. B. (1995). Mosquito-borne
disease transmission in tropical climates.
Environmental Health Perspectives, 103,
, pp. 164-174.
Mishra, P., Prasad, R., & Singh, R. (2023).
Sulfurous acid esters and their biological
activities: A review. Environmental
Chemistry Letters, 21, 3, pp. 591-606.
Muchmore, S. W., Edmunds, J. J., Stewart, K.
D., and Hajduk, P. J. (2010)
Cheminformatic tools for medicinal
chemists. J Med Chem. 53, 13, pp. 4830–
Nwangwu, S., Okanu, N., & Okonkwo, M.
(2024). Aedes aegypti: Distribution,
biology, and disease transmission.
Current Tropical Medicine Reports, 21,
, pp. 12-23.
Nwangwu, U.C., Oguzie, J. U., Nwachukwu,
W. E., Onwude, C. O., Dogunro, F. A., Diallo, M., Ezihe, C. K., Agashi, N. O.,
Eloy, E. I., Anokwu, S. O,,Anioke, C. C.,
Ikechukwu, L. C., Nwosu, C. M.,
Nwaogo, O. N., Ngwu, I. M., Onyeanusi,
R. N., Okoronkwo, A. I,,Orizu, F. U.,
Etiki, M. O., Onuora, E. N., Adeorike, S.
T., Okeke, P. C., Chukwuekezie, O. C.,
Ochu, J. C., Ibrahim, S. S., Ifedayo, A,,
Ihekweazu, C., & Happi, C. T. (2024).
Nationwide surveillance identifies
yellow fever and chikungunya viruses
transmitted by various species
of Aedes mosquitoes in Nigeria. bioRxiv
:2024.01.15.575625. doi:
1101/2024.01.15.575625.
O'Boyle, N.M., Banck, M., James, C.A. et al.
(2011). Open Babel: An open chemical
toolbox. J Cheminform 3, 33,
https://doi.org/10.1186/1758-2946-3-33.
Paixão, E. S., Teixeira, M. G., and Rodrigues,
L. C. (2017). Zika, chikungunya and
dengue: the causes and threats of new and
re-emerging arboviral diseases. BMJ
Global Health.
https://doi.org/10.1136/bmjgh-2017-
Paixão, P., Teixeira, M. G., & Costa, M.
(2017). The global burden of dengue and
its management. Journal of Global
Health, 7, 2, pp. 234-243.
Rajkumar S., & Jebanesan A. (2005)
Oviposition deterrent and skin repellent
activities of solanum trilobatum leaf
extract against the malarial vector
Anopheles stephensi. Journal of Insect
Science. 5, 1, 15 doi: 10.1093/jis/5.1.15.
Rajkumar, R., Manikandan, S., & Kumar, S.
(2022). Sterols from plant sources and
their insecticidal activities. Journal of
Applied Entomology, 146(, 4, pp. 455-
Reddy, P. S., Kiran, B. S., & Rajasekaran, T.
(2021). Phytochemical and
pharmacological aspects of Solanum
erianthum: A review. Journal of
Ethnopharmacology, 274, 114062.
Riddiford, L. M. (1994) Cellular and
molecular actions of Juvenile hormone I.
General considerations and
premetamorphic actions. Adv. Insect
Phys. 24, pp. 213–274. Doi:
1016/S0065-2806(08)60084-3.
Ruiz-Díaz, M. S., Gómez-Camargo, D. E.,
Alario, N., Salguedo-Madrid, G. I., and
Mora-García, G. J. (2017). Analysis of
Health Indicators in Two Rural
Communities on the Colombian
Caribbean Coast: Poor Water Supply and
Education Level Are Associated with
Water-Related Diseases. The American
Journal of Tropical Medicine and
Hygiene.
https://doi.org/10.4269/ajtmh.16-0305
Ruiz-Díaz, R., Abreu, S., & Santos, M.
(2017). Breeding sites of Aedes aegypti:
A review of key environmental factors.
Environmental Monitoring and
Assessment, 189, 12, pp. 635-644.
Singh, A., Saini, P., & Kumar, R. (2024).
Insecticidal activity of Solanum
erianthum against Aedes aegypti larvae.
Journal of Agricultural and Food
Chemistry, 72, 5, pp. 1212-1221.
Singha, B., & Chandra, H. (2011). Mosquito
larvicidal activity of Solanum tuberosum.
Journal of Vector Borne Diseases, 48, 3,
pp. 142-146.
Singha, S., & Chandra G. (2011). Mosquito
larvicidal activity of some common
spices and vegetable waste on Culex
quinquefasciatus and Anopheles
stephensi. Asian Pacific Journal of
Tropical Medicine. 2011;4:288–293. doi:
1016/s1995-7645(11)60088-6.
Turchen, L. M., Cosme-Junior, L., & Guedes,
R. N. C. (2020). Plant-derived
insecticides under meta-analyses: status,
biases, and knowledge gaps. Insects. 11,
, pp. 532-541.
Turchen, L., Mohamed, F., & Bonilla, F.
(2020). Current trends in insecticide
resistance and vector control strategies.
Annual Review of Entomology, 65, pp.
-107.
Turchen, L., Mohamed, F., & Bonilla, F.
(2023). Novel insecticide targets: Insect
hormone systems and natural products.
Annual Review of Entomology, 68, pp.
-141.
Ventrella, E., Adamski, Z., Chudzinska, E.,
Miadowicz-Kobielska, M., Marciniak,
P., Büyükgüzel, E., Büyükgüzel, K.,
Erdem, M., Falabella, P., Scrano, L., &
Bufo, S.A. (2016). Solanum tuberosum
and Lycopersicon esculentum leaf
extracts and single metabolites affect
development and reproduction of
Drosophila melanogaster. PLoS One 11,
e0155958.
Wu, J., Zhang, Q., & Cheng, Y. (2016). The
role of juvenile hormone in insect
development and reproduction. Insect
Biochemistry and Molecular Biology, 77,
pp. 1-13.
Wu, Z., Guo, W., Xie, Y., & Zhou, S. (2016).
Juvenile Hormone Activates the
Transcription of Cell-division-cycle 6
(Cdc6) for Polyploidy-dependent Insect
Vitellogenesis and Oogenesis. J Biol
Chem. 4; doi: 10.1074/jbc.M115.698936.
Yang, S., Yu, Y., Gao, X., Zhang, Z. & Wang,
F. (2021). Recent advances in
electrocatalysis with phthalocyanine.
Chemical Society Reviews, 50, pp. 12985-
Yüksel, F., Gürek, A. G., Lebrun, C. & Ahsen, V.
(2005). Synthesis and solvent effects on the
spectroscopic properties of octatosylamido
phthalocyanines. New Journal of Chemistry,
, pp. 726 – 732.
Yüksel, F., Tuncel, S. & Ahsen, V. (2008).
Synthesis and characterizations of
peripheral octa-amino and octaamidophthalocyanines. Journal of
Porphyrins and Phthalocyanines, 12, pp.
– 130.
Yüzeroğlu, M., Karaoğlan, G. K., Köse, G. G. &
Erdoğmuş, A. (2021). Synthesis of new zinc
phthalocyanines including Schiff base and
halogen; photophysical, photochemical, and
fluorescence quenching studies. Journal of
Molecular Structure 1238 (2021) 130423(1
– 10).
Zhang, X-F., Li, X., Niu, L., Sun, L. & Liu, L.
(2009). Charge Transfer Photophysics of
Tetra(α-amino) Zinc Phthalocyanine.
Journal of Fluorescence, 19, pp. 947−954.
Zhang, X, F. & Xu, H. (1994). Synthesis and
photophysical properties of substituted zinc
phthalocyanines. Chemical Research in
Chinese Universities, 15, pp. 917 – 921.
Zi, Y., Yang, K., He, J., Wu, Z., Liu, J. & Zhang,
W. (2022). Strategies to enhance drug
delivery to solid tumors by harnessing the
EPR effects and alternative targeting
mechanisms. Advanced Drug Delivery 188:
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal and Author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.