Identification of Potential Aedes aegypti Juvenile Hormone Inhibitors from Methanol Extract of Leaves of Solanum erianthum: An In Silico Approach

Authors

  • Taye Temitope Alawode Federal University Otuoke, Bayelsa State, Nigeria

Keywords:

Health challenge, Aedes aegypti, insecticide, Solanum erianthum, Docking

Abstract

Communication in Physical Sciences, 2024, 11(4):669-679

Author: Taye Temitope Alawode
Received: 24 April 2024/Accepted: 28 July 2024

This study explores the potential of phytoconstituents from the methanol extract of Solanum erianthum leaves as inhibitors of
juvenile hormones in Aedes aegypti using an in silico approach. Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified key compounds in the extract, including γ-sitosterol (40.25%), Ergost-5-en-3-ol (8.75%), and Stigmasterol (8.17%). Molecular docking simulations with the juvenile hormone-binding protein (PDB ID: 5V13) revealed that Ergost5-en-3-ol (−8.316 kcal/mol) and 9,19- cycloergost-24(28)-en-3-ol (−8.388 kcal/mol) exhibited superior binding affinities compared to the standard juvenile hormone inhibitor Pyriproxyfen (−6.081 kcal/mol). Additionally, Phenol, 2,4-bis(1,1-dimethylethyl) (−7.063 kcal/mol) and DL-α-Tocopherol (−6.411 kcal/mol) showed moderate binding affinities. The physicochemical properties of these compounds, including their potential for intestinal absorption and blood-brain barrier penetration, were favourable. These findings suggest that the identified compounds may serve as promising bioinsecticides for controlling Aedes aegypti and mitigating the
spread of vector-borne diseases.

Downloads

Download data is not yet available.

Author Biography

Taye Temitope Alawode, Federal University Otuoke, Bayelsa State, Nigeria

Department of Chemistry

References

Bhatt, S., Gething, P. W., Brady, O. J.,

Messina, J. P., Farlow, A. W., Moyes, C.

L., Drake, J. M., Brownstein, J. S., Hoen,

A. G., Sankoh, O., Myers, M. F., George,

D. B., Jaenisch, T., Wint, G. R.,

Simmons, C. P., Scott, T. W., Farrar, J. J,

and Hay, S. I. (2013). The global

distribution and burden of dengue.

Nature. 25, doi:10.1038/nature12060.

Borges, A., Ferreira, C., & Lima, A. (2022).

Plant-derived antioxidants: Effects on

insecticides and potential applications.

Pesticide Biochemistry and Physiology,

, 104989, pp. 405-434.

Borges, S., Alkassab, A. T., Collison, E.,

Hinarejos, S., Jones, B., McVey, E.,

Roessink, I., Steeger, T., Sultan, M., and

Wassenberg, J. (2021). Overview of the

testing and assessment of effects of

microbial pesticides on bees: strengths,

challenges and perspectives. Apidologie,

, 6, pp. 1256–1277.

https://doi.org/10.1007/s13592-021-

-7.

Bugnon, M., Röhrig, U. F., Goullieux, M.,

Perez, M. A. S., Daina, A., Michielin, O.,

and Zoete, V. (2024) SwissDock 2024:

major enhancements for small-molecule

docking with Attracting Cavities and

AutoDock Vina. Nucleic Acids Res. 2024

(Web Server issue) , gkae300.

Chen, C. S., Chen, C. Y., Ravinath, D. M.,

Bungahot, A., Cheng, C. P., and You, R.

I. (2018). Functional characterization of

chitin-binding lectin from Solanum

integrifolium containing anti-fungal and

insecticidal activities. BMC Plant

Biology. 181, doi: 10.1186/s12870-017-

-0.

Chen, Y., Xu, J., & Zhao, Y. (2022). Fatty

acids and esters in plant extracts:

Implications for insect control. Journal of

Agricultural and Food Chemistry, 70, 15,

pp. 4750-4761.

Chowdhury, N., Ghosh, A., and Chandra, G.

(2008) Mosquito larvicidal activities of

Solanum villosum berry extract against

the dengue vector Stegomyia aegypti.

BMC Complementary and Alternative

Medicine. 8, 1, 10, doi: 10.1186/1472-

-8-10.

Chowdhury, N., Gupta, A., & Tripathi, R.

(2008). Insecticidal activity of Solanum

villosum against Aedes aegypti. Journal

of Vector Ecology, 33, 2, pp. 282-285.

Daina, A., Michielin, O. and Zoete, V. (2017).

SwissADME: a free web tool to evaluate

pharmacokinetics, drug-likeness and

medicinal chemistry friendliness of small

molecules. Sci Rep 7, 42717,

https://doi.org/10.1038/srep42717.

Eberhardt, J., Santos-Martins, D, Tillack, A.

F., Forli, S. (2021). AutoDock Vina 1.2.0:

New Docking Methods, Expanded Force

Field, and Python Bindings. J. Chem. Inf.

Model. 61, 8, pp. 3891–3898, doi:

1021/acs.jcim.1c00203.

Elizalde-Romero, C. A., Montoya-Inzunza, L.

A., Contreras-Angulo, L. A., Heredia, J.

B., and Gutierrez-Grijalva, E. P. (2021).

Solanum Fruits: phytochemicals, bioaccessibility and bioavailability, and their

relationship with their health-promoting

effects. Frontiers in Nutrition. 8, doi:

3389/fnut.2021.790582.790582.

Elizalde-Romero, C., Fernández-Santos, B., &

Santamaría, R. (2021). Biological

activities of Solanum species: A review.

Phytotherapy Research, 35, 3, pp. 1308-

Gubler, D. J. (2002). Epidemic

dengue/dengue hemorrhagic fever as a

public health, social and economic

problem in the 21st century. Trends in

Microbiology, 10, 2, pp. 100–103.

https://doi.org/10.1016/s0966-

x(01)02288-0.

Gubler, D. J. (2002). The global emergence of

epidemic dengue fever and dengue

hemorrhagic fever. Clinical Infectious

Diseases, 34, 1, pp. 26-33.

Hahn, C. S., French, O. G., Foley, P., Martin,

E. N., and Taylor, R. P. (2001). Bispecific

Monoclonal Antibodies Mediate Binding

of Dengue Virus to Erythrocytes in a

Monkey Model of Passive Viremia. The

Journal of Immunology. 166, 2, pp.

–1065,

https://doi.org/10.4049/jimmunol.166.2.

Hahn, N. H., Rothman, A. L., & Vasilakis, N.

(2001). Dengue fever and other

mosquito-borne viral diseases. Journal of

Clinical Virology, 20(2), 135-145.

Hosseinzadeh, H., Shamsa, H., & Shariati, S.

(2023). Insecticidal activity of βsitosterol: A review. Journal of Insect

Science, 23, 1, pp. 1-10.

Ibanez, S., Gallet, C., & Despres, L., (2012).

Plant insecticidal toxins in ecological

networks. Toxins (Basel), 4, pp. 228–243.

Khan, M. T., Ahmed, T., & Ali, S. (2023).

Synergistic effects of tocopherols in

insecticide formulations. Journal of

Insect Physiology, 136, 104620. Pp. 1-12.

Kim, I.L., Pham, V., Jablonka, W., Goodman,

W.G., Ribeiro, J. M. C., & Andersen J.F.

(2017) A mosquito hemolymph odorantbinding protein family member

specifically binds juvenile hormone, J.

Biol. Chem. 292, 37,

https://doi.org/10.1074/jbc.

M117.802009.

Kim, S., Lee, Y., & Kim, H. (2017). 3D X-ray

crystallographic structure of juvenile

hormone-binding protein from mosquito

species. Journal of Molecular Biology,

, 15, pp. 2415-2427.

Knudsen, A. B. (1995). Global distribution

and continuing spread of Aedes

albopictus. Parassitologia. 37, 2,-3, pp.

-97.

Knudsen, A. B. (1995). Mosquito-borne

disease transmission in tropical climates.

Environmental Health Perspectives, 103,

, pp. 164-174.

Mishra, P., Prasad, R., & Singh, R. (2023).

Sulfurous acid esters and their biological

activities: A review. Environmental

Chemistry Letters, 21, 3, pp. 591-606.

Muchmore, S. W., Edmunds, J. J., Stewart, K.

D., and Hajduk, P. J. (2010)

Cheminformatic tools for medicinal

chemists. J Med Chem. 53, 13, pp. 4830–

Nwangwu, S., Okanu, N., & Okonkwo, M.

(2024). Aedes aegypti: Distribution,

biology, and disease transmission.

Current Tropical Medicine Reports, 21,

, pp. 12-23.

Nwangwu, U.C., Oguzie, J. U., Nwachukwu,

W. E., Onwude, C. O., Dogunro, F. A., Diallo, M., Ezihe, C. K., Agashi, N. O.,

Eloy, E. I., Anokwu, S. O,,Anioke, C. C.,

Ikechukwu, L. C., Nwosu, C. M.,

Nwaogo, O. N., Ngwu, I. M., Onyeanusi,

R. N., Okoronkwo, A. I,,Orizu, F. U.,

Etiki, M. O., Onuora, E. N., Adeorike, S.

T., Okeke, P. C., Chukwuekezie, O. C.,

Ochu, J. C., Ibrahim, S. S., Ifedayo, A,,

Ihekweazu, C., & Happi, C. T. (2024).

Nationwide surveillance identifies

yellow fever and chikungunya viruses

transmitted by various species

of Aedes mosquitoes in Nigeria. bioRxiv

:2024.01.15.575625. doi:

1101/2024.01.15.575625.

O'Boyle, N.M., Banck, M., James, C.A. et al.

(2011). Open Babel: An open chemical

toolbox. J Cheminform 3, 33,

https://doi.org/10.1186/1758-2946-3-33.

Paixão, E. S., Teixeira, M. G., and Rodrigues,

L. C. (2017). Zika, chikungunya and

dengue: the causes and threats of new and

re-emerging arboviral diseases. BMJ

Global Health.

https://doi.org/10.1136/bmjgh-2017-

Paixão, P., Teixeira, M. G., & Costa, M.

(2017). The global burden of dengue and

its management. Journal of Global

Health, 7, 2, pp. 234-243.

Rajkumar S., & Jebanesan A. (2005)

Oviposition deterrent and skin repellent

activities of solanum trilobatum leaf

extract against the malarial vector

Anopheles stephensi. Journal of Insect

Science. 5, 1, 15 doi: 10.1093/jis/5.1.15.

Rajkumar, R., Manikandan, S., & Kumar, S.

(2022). Sterols from plant sources and

their insecticidal activities. Journal of

Applied Entomology, 146(, 4, pp. 455-

Reddy, P. S., Kiran, B. S., & Rajasekaran, T.

(2021). Phytochemical and

pharmacological aspects of Solanum

erianthum: A review. Journal of

Ethnopharmacology, 274, 114062.

Riddiford, L. M. (1994) Cellular and

molecular actions of Juvenile hormone I.

General considerations and

premetamorphic actions. Adv. Insect

Phys. 24, pp. 213–274. Doi:

1016/S0065-2806(08)60084-3.

Ruiz-Díaz, M. S., Gómez-Camargo, D. E.,

Alario, N., Salguedo-Madrid, G. I., and

Mora-García, G. J. (2017). Analysis of

Health Indicators in Two Rural

Communities on the Colombian

Caribbean Coast: Poor Water Supply and

Education Level Are Associated with

Water-Related Diseases. The American

Journal of Tropical Medicine and

Hygiene.

https://doi.org/10.4269/ajtmh.16-0305

Ruiz-Díaz, R., Abreu, S., & Santos, M.

(2017). Breeding sites of Aedes aegypti:

A review of key environmental factors.

Environmental Monitoring and

Assessment, 189, 12, pp. 635-644.

Singh, A., Saini, P., & Kumar, R. (2024).

Insecticidal activity of Solanum

erianthum against Aedes aegypti larvae.

Journal of Agricultural and Food

Chemistry, 72, 5, pp. 1212-1221.

Singha, B., & Chandra, H. (2011). Mosquito

larvicidal activity of Solanum tuberosum.

Journal of Vector Borne Diseases, 48, 3,

pp. 142-146.

Singha, S., & Chandra G. (2011). Mosquito

larvicidal activity of some common

spices and vegetable waste on Culex

quinquefasciatus and Anopheles

stephensi. Asian Pacific Journal of

Tropical Medicine. 2011;4:288–293. doi:

1016/s1995-7645(11)60088-6.

Turchen, L. M., Cosme-Junior, L., & Guedes,

R. N. C. (2020). Plant-derived

insecticides under meta-analyses: status,

biases, and knowledge gaps. Insects. 11,

, pp. 532-541.

Turchen, L., Mohamed, F., & Bonilla, F.

(2020). Current trends in insecticide

resistance and vector control strategies.

Annual Review of Entomology, 65, pp.

-107.

Turchen, L., Mohamed, F., & Bonilla, F.

(2023). Novel insecticide targets: Insect

hormone systems and natural products.

Annual Review of Entomology, 68, pp.

-141.

Ventrella, E., Adamski, Z., Chudzinska, E.,

Miadowicz-Kobielska, M., Marciniak,

P., Büyükgüzel, E., Büyükgüzel, K.,

Erdem, M., Falabella, P., Scrano, L., &

Bufo, S.A. (2016). Solanum tuberosum

and Lycopersicon esculentum leaf

extracts and single metabolites affect

development and reproduction of

Drosophila melanogaster. PLoS One 11,

e0155958.

Wu, J., Zhang, Q., & Cheng, Y. (2016). The

role of juvenile hormone in insect

development and reproduction. Insect

Biochemistry and Molecular Biology, 77,

pp. 1-13.

Wu, Z., Guo, W., Xie, Y., & Zhou, S. (2016).

Juvenile Hormone Activates the

Transcription of Cell-division-cycle 6

(Cdc6) for Polyploidy-dependent Insect

Vitellogenesis and Oogenesis. J Biol

Chem. 4; doi: 10.1074/jbc.M115.698936.

Yang, S., Yu, Y., Gao, X., Zhang, Z. & Wang,

F. (2021). Recent advances in

electrocatalysis with phthalocyanine.

Chemical Society Reviews, 50, pp. 12985-

Yüksel, F., Gürek, A. G., Lebrun, C. & Ahsen, V.

(2005). Synthesis and solvent effects on the

spectroscopic properties of octatosylamido

phthalocyanines. New Journal of Chemistry,

, pp. 726 – 732.

Yüksel, F., Tuncel, S. & Ahsen, V. (2008).

Synthesis and characterizations of

peripheral octa-amino and octaamidophthalocyanines. Journal of

Porphyrins and Phthalocyanines, 12, pp.

– 130.

Yüzeroğlu, M., Karaoğlan, G. K., Köse, G. G. &

Erdoğmuş, A. (2021). Synthesis of new zinc

phthalocyanines including Schiff base and

halogen; photophysical, photochemical, and

fluorescence quenching studies. Journal of

Molecular Structure 1238 (2021) 130423(1

– 10).

Zhang, X-F., Li, X., Niu, L., Sun, L. & Liu, L.

(2009). Charge Transfer Photophysics of

Tetra(α-amino) Zinc Phthalocyanine.

Journal of Fluorescence, 19, pp. 947−954.

Zhang, X, F. & Xu, H. (1994). Synthesis and

photophysical properties of substituted zinc

phthalocyanines. Chemical Research in

Chinese Universities, 15, pp. 917 – 921.

Zi, Y., Yang, K., He, J., Wu, Z., Liu, J. & Zhang,

W. (2022). Strategies to enhance drug

delivery to solid tumors by harnessing the

EPR effects and alternative targeting

mechanisms. Advanced Drug Delivery 188:

Downloads

Published

2024-08-06