A Review on the Synthesis and Application of Nanomaterials for the Removal of Emerging Contaminants from Industrial Wastewater


  • Steven S. Odoemelam Michael Okpara University of Agriculture Umudike, P.M.B 7267, Umuahia, Abia State, Nigeria
  • Jude C. Nnanji Michael Okpara University of Agriculture Umudike, P.M.B 7267 Umuahia, Abia State, Nigeria


Nanomaterials, emerging contaminants, industrial wastewater, nanoremediation, environmental pollution


Communication in Physical Sciences, 2020, 5(3): 343-357

Authors: Comfort M. Ngwu, *Steven A.  Odoemelam  and Jude C.  Nnaji

Received 02 May 2020/Accepted 27 June 2020

The removal of emerging contaminants from the environment has been an issue of top priority in recent times due to their adverse ecological effects. Nanomaterials have proven their worth in the search for effective and efficient remediation materials for wastewaters. The chemical methods of nanomaterial synthesis with co-precipitation being the simplest and the biological methods using plants provide ease of fabrication and make them economical too. Characterizations are done using different techniques such as powder XRD, electronic microscopy, atomic force microscopy and thermogravimetric analysis and these give information about the morphology, particle size, impurities, roughness, thermal stability and degradation pattern of nanomaterials. Nanomaterials often find application in adsorption, photocatalysis, catalytic ozonation, membrane process and nanoremediation of environmental pollution.


Download data is not yet available.

Author Biographies

Steven S. Odoemelam, Michael Okpara University of Agriculture Umudike, P.M.B 7267, Umuahia, Abia State, Nigeria

Department of Chemistry

Jude C. Nnanji, Michael Okpara University of Agriculture Umudike, P.M.B 7267 Umuahia, Abia State, Nigeria

Department of Chemistry


Adejumoke., I. A., Adebesin., O. Oluyori., B., P. A., Adelani-Akande., T. A. T., Dada., O. A., & Oreofe., T. A. (2018). Water Pollution: Effects, Prevention, and Climatic Impact. Water Challenges of an Urbanizing World. Intechopen, doi:10.5772/intechopen. -72018

Adeleye, A. S., Conway, J. R., Garner, K., Huang, Y., Su, Y. & Keller, A. A., (2016). Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chemical Engineering Journal, 286, pp. 640–662.

Ali, K., Dwivedi, S., Azam, A., Saquib, Q., Al-Said, M., Alkhedhairy, A. & Musarrat, J. (2016). Aloe vera extracts functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. Journal of Colloid and Interface Science. 472, pp. 145-156.

Amin, M. T., Alazba, A. A. & Manzoor, U. (2014). A Review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances in Materials Science and Engineering, 1: 24, https://doi.org/10.1155/2014/825910

Attia, T. M. S., Hu, X. L. & Qiang, Y. D. (2013). Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere. 93, pp. 2076-2085.

Baer, D. R., Engelhard, M. H., Johnson, G. E., Laskin, J., Lai, J., Mueller, K., & Moon, D. (2013). Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. Journal of vacuum Science & Technology. A, Vacuum, surfaces, and films: an official journal of the American Vacuum Society, 31, 5, pp. 50820.

Basavegowda, N., Idhayadhulla, A. & Lee, Yong. (2014). Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities. Materials Science and Engineering: C. 43, pp. 58–64.

Basheer, A., (2018). New generation nano-adsorbent for the removal of emerging contaminants in water. Journal of Molecular Liquid, 261, 1, 583-593.

Bhaviripudi, S., Mile, E., Steiner, S. A., Zare, A. T., Dresselhaus, M. S., Belcher, A. M., and Kong, J. (2007). CVD Synthesis of Single-Walled Carbon Nanotubes from Gold Nanoparticle Catalysts. Journal of the American Chemical Society, 129, 6, pp. 1516–1517.

Biswas, M., and Ray, S. S. (2001). Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites Advanced Polymer Science, 155, pp. 167-221

Burkhard, R., Deletic, A. and Craig, A. (2000). Techniques for water and wastewater management: a review of techniques and their integration in planning. Urban Water, 2, 3, pp. 197–221.

Chauhan, A., Sillu, D. & Agnihotri, S. (2019). Removal of pharmaceutical contaminants in wastewateruUsing nanomaterials: A Comprehensive Review. Current Drug Metabolites, 20, 6, pp. 483‐505.

Christian, P., Von der, K. F., Baalousha, M., & Hofmann, T. (2008). Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology, 17, pp. 326-43.

Dey, S., Bano, F., and Malik, A. (2019). Pharmaceuticals and personal care product (PPCP) contamination—a global discharge inventory. Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, pp. 1-26. doi:10.1016/b978-0-12-816189-0.00001-9

Eslami, A, E., Chegini, Z. G., Khashij, M. Mehralian, M. & Hashemi, M. (2020). Removal of acetaminophen (ACT) from aqueous solution by using nanosilica adsorbent: experimental study, kinetic and isotherm modelling. Pigment and Resin Technology, 49, 1, pp. 55-62. https://doi.org/10.1108/PRT-06-2019-0057

Fakhri, A. & Behrouz, S. (2015). Comparison studies of adsorption properties of MgO nanoparticles and ZnO–MgO nanocomposites for linezolid antibiotic removal from aqueous solution using response surface methodology. Proceeding on Safety and, Environmental Protection, 94, pp. 37-43.

Ferroudj, N., Nzimoto, J., Davidson, A., Talbot, D., Briot, E., Dupuis, V. & Abramson, S. (2013). Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Applied Catalysis B: Environmental, 136, pp. 9-18.

Garadkar, P. K. M., Gawade, V., Gavade, N., Shinde, H., Babar, S. B & Kadam, A. (2017). Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. Journal of Material Science: Materials in Electronic, 28, pp. 14033–14039.

Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., der Ploeg, M., de Zee, S. E. A. T. M. & Ritsema, C. J. Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3, 1, 57-65

Ghorbani, P., Soltani, M., Homayouni-Tabrizi, M., Namvar, F., Azizi, S., Mohammad, R., Boroumand & Moghaddam, A. (2015). Sumac silver novel biodegradable nano composite for bio-medical application: Antibacterial activity. Molecules. 20, pp. 12946–12958.

Gnanasangeetha, D. & Thambavani, S (2013). ZnO nanoparticle entrenched on activated silica as a proficient adsorbent for removal of As3+ International Journal of Research in Pharmaceutical and Biomedical Sciences, 4, 4, pp. 1295–1304

Grey, D., Garrick, D., Blackmore, D., Kelman, J., Muller, M. & Sadoff, C. (2013). Water security in one blue planet: twenty-first century policy challenges for science. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, doi/10.1098/rsta.2012.0406.

Gupta P., Kumar D., Quraishi M.A. & Parkash O. (2016) Metal Matrix Nanocomposites and Their Application in Corrosion Control. In:

Husain M., Khan Z. (eds) Advances in Nanomaterials. Advanced Structured Materials, Springer, New Delhi.

Gupta, V. K., Tyagi, I., Sadegh, H., Shahryari-Ghoshekand, R., Makhlouf, A. S. H., & Maazinejad, B., (2015). Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Science Technology and Development, 34, 3, pp: 195-214.

Hassan, S., Abdel-Shafy, H., & Mansour, M. (2018). Removal of pyrene and benzo(a)pyrene micropollutant from water via adsorption by green synthesized iron oxide nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, pp. 2043-6254

Huang, Y. & Keller, A. A. (2013). Magnetite nanoparticles adsorbents for emerging organic contaminants. ACS Sustainable Chemical Engineering, 1, 7, pp. 731-736

Husen, A and Iqbal, M. (2019). Nanomaterials and Plant Potential. (1st edition) Springer publishing company, Salmon Tower Building, New York City.

Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry. 13, pp. 2638-2650.

Kango, S., Kalla, S., Celli, A., Njuguna, J., Habibi, Y. & Kumar, R. (203). Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review. Progress in Polymer Science, 38, 8, pp. 1232-1261.

Kaur, Y., Bhatia, Y., Chaudhary, S., & Chaudhary, G. R. (2017). Comparative performance of bare and functionalize ZnO nanoadsorbents for pesticide removal from aqueous solution. Journal of Molecular Liquids, 234, pp. 94-103

Kuang, Y., Wang, Q., Chen, Z., Megharaj, M. & Naidu, R (2013). Heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. Journal of Colloid and Interface Science, 410, pp. 67–73.

Kumar, V. & Prem, A. A. (2018). Green Synthesis and Characterization of Iron Oxide Nanoparticles Using Phyllanthus Niruri Extract. Oriental Journal of Chemistry, 34, 5, pp. 2583-2589.

Kümmerer, K (2009). The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. Journal of Environmental Management, 90, pp. 2354–2366.

Kurwadkar, S., Hoang, T., Malwade, K., Kanel, S. E., Harper Jr, W. F. & Struckhoff, K. (2019). Application of carbon nanotubes for removal of emerging contaminants of concern in engineered water and wastewater treatment systems. Nanotechnology for Environmental Engineering, 4, 12, https://doi.org/10.1007/s41204-019-0059-1

Latha, N., & Gowri, M. (2014). Biosynthesis and characterization of Fe3O4 nanoparticles using Carica papaya leaves extract. International Journal of Scientific Research, 3, 11, pp. 1551-1556.

Ling, W., Wang, M., Xiong, C. & Xie, D. (2019). Synthesis, surface modification and application of iron oxide nanoparticles. Journal of Materials Research, 34, 11, pp. 1828-1844.

Liu, F., Hu, N., Zhang, J. Y., Atobe, S., Weng, S. Y., Ning, H.M., Liu, Y. L., Wu, L. K., Zhao, Y. X., Mo, F. H., Fu, S. Y., Xu, C. H., & Alamusi, W. Y. (2016). The interfacial mechanical properties of functionalized graphene-polymer nanocomposites, RSC Advances, 6, pp. 66658-66664

Mahpishanian, S., Sereshti, H., & Baghdadi, M. (2015). Superparamagnetic core-shells anchored onto graphene oxide grafted with phenylethyl amine as a nano-adsorbent for extraction and enrichment of organophosphorus pesticides from fruit, vegetable and water samples. Journal of chromatography, 1406, pp. 48-58

Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Shuaib, D. T., Ajala, A. O. & Mohammed, K. (2020). Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Applied Water Science, 10, 49, https://doi.org/10.1007/s13201 -019-1138-y.

Nadaroglu, H., Alayli, A. & Ince, S. (2017). Synthesis of Nanoparticles by Green Synthesis Method. International Journal of Innovative Research and Reviews. 1, pp. 6-9.

Narayanan, S. Sathy, B. N, Mony, U., Koyakutty, M. Nair, S. V. & Menon, D. (2012). “Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging,” ACS Applied Materials and Interfaces, 4, 1, pp. 251–260.

Nayantara, P. K. (2018). Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: a review, Biotechnology Research and Innovation, 2, 1, pp. 63-73.

Okada, A., Kawasumi, M., Usuki, Y., Kojima, A., Kurauchi, Y. T. & Kamigaito, O. (1990). Synthesis and properties of nylon-6/clay hybrids Schaefer, D. W & Mark, J. E. (Eds.), Polymer Based Molecular Composites, MRS Symposium Proceedings, pp. 45-50 Pittsburgh

Oudhia, A., Kulkarni, P., & Sharma, S. (2015). Green synthesis of ZnO nanotubes for bioapplications. Int Journal of Current Engineering Technology, 1, pp. 280–281.

Pal, A., Gin, K.Y.H., Lin, A.Y.-C., & Reinhard M. (2010). Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408, 24, pp. 6062-6069.

Pantidos, N. & Horsfall, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants, Journal od Nanomedicals and Nanotechnology, 5, 23, doi 10.4172/2157-7439.1000233

Qu, J., Luo, C. & Hou, J. (2011). Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants. Micro & Nano Letters, IET. 6, pp. 174 - 176.

Qu, X., Alvarez, P. J. & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47, 12, pp. 3931-46.

Qu, X., Brame, J., Li, Q. & Alvarez, P. J., (2012). Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Account of Chemical Research, 46, 3, pp. 834–843.

Rasalingam, S., Peng, R., & Koodali, R. T. (2014). Removal of hazardous pollutants from wastewaters: Applications of TiO2-SiO2 mixed oxide materials. Journal of Nanomaterials, 1–42, doi.org/10.1155/2014/617405

Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., & Iqbal, H. M. N. (2018). Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environment International. doi:10.1016/j.envint.2018.11.038

Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science, 28, pp. 1539-1641

Rosenfeild, P. E. & Feng, L. G. H. (2011). Risks of Hazadous wastes. Elsevier International, https://doi.org/10.1016/C2009-0-62341-2

Saharan, P., Chaudhary, G. R., Mehta, S. K. & Umar A. (2014). Removal of water contaminants by iron oxide nanomaterials. Journal of NanoScieice and Nanotechnology, 14, 1, p. 627‐643.

Salavati-niasari, M., Davar, F and& Mir, N (2008). Synthesis and characterization of metallic copper nanoparticles via thermal decomposition Polyhedron, 27, pp. 3514–8

Salem, I., Salem, M., & El-Ghobashy M. (2017). The dual role of ZnO nanoparticles for efficient capture of heavy metals and Acid blue 92 from water. Journal of Molecular Liquids. 248, pp. 527-538.

Senthil, M. & Ramesh, C. (2012). Biogenic synthesis of Fe3O34 nanoparticles using tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Digest Journal of Nanomaterials and Biostructures, 7, pp. 1655-1661.

Senthilkumar, S. R & Siva Kumar, T (2014). Green tea Camellia sinensis mediated synthesis of zinc oxide nanoparticles and studies on their antimicrobial activities. International Journal of Pharmaceutical Science. 6, pp. 461–465.

Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. (2015). Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials (Basel, Switzerland), 8, 11, pp. 7278–7308.

Shan, S, Zhao, Y, Tang, H. & Cui, F. (2017). A Mini-review of Carbonaceous Nanomaterials for Removal of Contaminants from Wastewater. IOP Conference Series: Earth and Environmental Science. 68. 012003. 10.1088/1755-1315/68/1/012003

Sindhura, K. S., Prasad, T. N., Selvam, P. & Hussain, O. M (2014). Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exoenzymes. Applied Nanoscience, 4, pp. 819–827.

Srivastava, A. (2017). Metal Matrix Nanocomposites (MMCs): A review of their Physical and Mechanical properties. International Journal of Nano Materials in Medicine and Engineering, 2:8, 152-154

Stan, M., Lung, I., Soran, M., Leostean, C., Popa, A., Stefan M., Lazar, M. D., Opris, O., Silipas, T. & Porav, A. S. (2017). Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts. Proceeding of Safety and Environment. 107, pp. 357-372.

Stuart, M., Lapworth, G., Crane, E. & Hart, A. (2012). Review of risk from potential emerging contaminants in UK groundwater. Science of the Total Environment, 416, pp. 1-21

Tai, C. Y., Tai, C., Chang, M. & Liu, H. (2007). Synthesis of Magnesium Hydroxide and Oxide Nanoparticles Using a Spinning Disk Reactor Industrial & Engineering Chemistry Research, 46, 17, pp. 5536–41

ThermoFisher, (2018): available at: https://www.thermofisher.com/ng/en/home/ industrial/environmental/environmental-learning-center/contaminant-analysis-information/emerging-contaminants-analysis.html [Accessed: 2019-06-13]

Tyagi, M. & Tyagi, D. (2014). Polymer Nanocomposites and their Applications in Electronics Industry. International Journal of Electronic and Electrical Engineering, 7, 6, pp. 603-608

Uzaira, R., Arun, I., & Abida, K. (2012). Synthesis, characterization and application of nanomaterials for the removal of emerging pollutants from industrial waste water, kinetics and equilibrium model”, Journal of Water Sustanability, 2, pp. 233244.

Venkateswarlu, S., Yakkate, S., Balaji, T., Prathima, B. & Jyothi, N. V (2013). Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Materials Letters, 100, pp. 241-244.

Vidya, C., Hiremath, S., Chandraprabha, M. N., Venugopal, I., Jain, A, & Bansal, K. (2013). Green synthesis of ZnO nanoparticle by Calotropis gigantea. International Journal of Current Engineering, 4, pp. 118–120.

Xu, L. Feng, J. Li, J. Liu, X. & Jiang, S. (2012). “Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatogra- phy of polycyclic aromatic hydrocarbons in water. Journal of Separation Science, 35, 1, pp. 93–100.

Yew, Y. P., Kamyar, S., Miyake, M., Kuwano, N., Khairudin, N., Mohamad, S. & Lee, K. X. (2016). Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract. Nanoscale Research Letters. 11. 10.1186/s11671-016-1498-2.

Zare, K., Najafi, F., & Sadegh, H., (2013). Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. Journal of Nanostructure, 3, pp. 1-3.

Zuccato, E., Castiglioni, S., Fanelli, R. & Bagnati, R. (2007). Inquinamento da farmaci: le evidenze (parte I). Ricerca and Practical, 2, pp.:67–73.