Computational Study of the Reaction Mechanism for the Formation of 4,5-Diaminophthalonitrile from 4,5-Dibromo-1,2-Diaminobenzene and Copper Cyanide

Authors

  • Kayode Sanusi Obafemi Awolowo University, Ile-Ife, Nigeria

Keywords:

Transition state, density functional theory, thermodynamic property, activation barrier

Abstract

Communication in Physical Sciences, 2024, 11(4):654-668

Author: Kayode Sanusi

Received: 17 June 2024/Accepted:  30 July 2024

This study investigates the mechanism of the reaction between 4,5-dibromo-1,2-diaminobenzene and copper cyanide using Density Functional Theory (DFT) calculations. The kinetics and the thermodynamic properties of the reaction were analyzed, revealing two major steps with activated complexes AC1 and AC2. Scheme 3 accurately depicts the reaction pathway. A triangular Cu-C=N moiety was found in the calculated transition states (TS), AC1 and AC2. The thermodynamic parameters for the first step show ΔG = -606.8 kJ mol-1 , ΔH = -610.7 kJ mol-1 and ΔS = -0.0132 kJ mol-1K-1 while for the second step ΔG = -600.1 kJ mol-1, ΔH = -603.6 kJ mol-1, and ΔS = -0.0117 kJ mol-1K-1 were obtained. The activation energies (Ea and Ec) for steps 1 and 2 are 189.0 kJ mol-1 and 210.6 kJ mol-1, respectively. The positive values of  and confirm the presence of energy barriers in both steps.These findings provide critical insights into the energetics and mechanism of the DDB reaction with copper cyanide, which is very crucial in understanding the strategy for the development of efficient synthetic procedures for the phthalonitrile.  

Downloads

Download data is not yet available.

Author Biography

Kayode Sanusi, Obafemi Awolowo University, Ile-Ife, Nigeria

Department of Chemistry

References

Adegoke, O. & Nyokong, T. (2014). Unsymmetrically substituted nickel triazatetra-benzcorrole and phthalocy- anine complexes: Conjugation to quantum dots and applications as fluorescent “turn on” sensors. Journal of Fluorescence, 24, pp. 481- 491.

Aftab, J., Farajzadeh, N., Yenilmez, H. Y., Özdemir, S., Gonca, S. & Bayir, Z. A. (2022). New phthalonitrile/metal phthalocyanine-gold nanoparticle conjugates for biological applications. Dalton Transactions, 51, pp. 4466 – 4476.

Albayrak, S., Farajzadeh, N., Yenilmez, H. Y., Özdemir, S., Gonca, S. & Bayir, Z. A. (2023). Fluorinated phthalocyanine/ silver nanoconjugates for multifunctional biological applications. Chemistry and Biodiversity, e202300389.

Baran, A., Çol, S., Karakiliç, E. & Özen, F. (2020). Photophysical, photochemical and DNA binding studies of prepared phthalocyanines. Polyhedron, 175: 114205.

Bayse, C. A., Brewster, T. P. & Pike, R. D. (2009). Photoluminescence of 1-D copper(I) cyanide chains: A theoretical description. Inorganic Chemistry, 48, pp. 174- 182.

Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, pp. - 5653.

Camerin, M., Magaraggia, M., Soncin, M., Jori, G., Moreno, M., Chambrier, I., Cook, M. J. & Russell, D. A. (2010). The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. European Journal of Cancer 46, 10, pp. 1910 – 1918.

Demirbaş, Ü. (2020). Synthesis, characterization, photophysical and photochemical properties of novel phthalocyanines. ChemistrySelect , 5, 15, pp. 4530 – 4537.

de Oliveira de Siqueira, L. B., dos Santos Matos, A. P., Mattos da Silva, M. R., Pinto, S. R., Santos-Oliveira, R. & Ricci-Júnior, E. (2022). Pharmaceutical nanotechnology applied to phthalocyanines for the promotion of antimicrobial photodynamic therapy: A literature review. Photodiagnosis and Photodynamic Therapy, 39: 102896. https://doi.org/10.1016/j.pdpdt.2022.102896.

El-Azhary, A. A. & Suter, H. U. (1996). Comparison between optimized geometries and vibrational frequencies calculated by the DFT methods, Journal of Physical Chemistry, 100, pp. 15056-15063.

Fabiano, E., Sala, F. D., Cingoland, R., Weimer, M. & Görling, A. (2005). Theoretical study of singlet and triplet excitation energies in oligothiophenes, Journal of Physical Chemistry, A, 109, pp. 3078 – 3085.

Farajzadeh, N., Aftab, J., Yenilmez, H. Y., Özdemir, S., Gonca, S. & Bayir, Z. A. (2022). The design and synthesis of metallophthalocyanine-gold nanoparticle hybrids as biological agents. New Journal of Chemistry, 46, pp. 5374 – 5384.

Farahmand, S., Ayazi-Nasrabadi, R. & Zolfigol, M. A. (2023). Amino-cobalt(II) phthalocyanine supported on silica chloride as an efficient and reusable heterogeneous photocatalyst for oxidation of alcohols. Tetrahedron Letters, 118: 154403. https://doi.org/10.1016/j.tetlet.2023.154403.

Gamelas, S. R. D., Tomé, J. P. C., Tomé, A. C. & Lourenço, L. M. O. (2023). Advances in photocatalytic degradation of organic pollutants in wastewaters: harnessing the power of phthalocyanine and phthalocyanine-containing materials. RSC Advances 13, pp. 33957-– 33993.

Gaussian 16, Revision C.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2019) Gaussian, Inc., Wallingford CT.

Golchoubian, H., Moayyedi, G. & Reisi, N. (2015). Halochromism, ionochromism, -solvatochromism and density functional study of a synthesized copper(II) complex containing hemilabile amide derivative ligand. Spectrochimica Acta A Molecular Biomolecular Spectroscopy, 138, pp. 913 -924.

Grambow, C. A., Pattanaik, L. & Green, W. H. (2020). Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry. Science Data 7: 137, https://doi.org/10.1038/s41597-020-0460-4.

Gregory P. (2000). Industrial applications of phthalocyanines. Journal of Porphyrins and Phthalocyanines, 4, 4, pp. 432 – 437.

Gvozdev, D. A., Solovchenko, A. E., Martynov, A. G., Yagodin, A. V., Strakhovskaya, M. G., Gorbunova, Y. G. & Maksimov, E. G. (2022). Fluorescence quenching of carboxy-substituted phthallocyanines conjugated with nanoparticles under high stoichiometric ratios. Photonics 9, 9, 668. 10.3390/photonics9090668.

Guney, G. & Gorduk, S. (2023). Photophysical and photochemical studies on non-peripherally and peripherally Ga(III) chloro phthalocyanines in different solvents. Journal of Organometallic Chemistry, 999: 122813.

Hutchison, G. R., Ratner, M. A. & Marks, T. J. (2005). Hopping transport in conductive heterocyclic oligomers: Reorganization energies and substituent effects, Journal of American Chemical Society, 127, pp. 2339- 2350.

Idowu, M. & Nyokong, T. (2012). Photophysical behavior of fluorescent nanocomposites of phthaloyanine linked to quantum dots and magnetic nanoparticles. International Journal of Nanoscience 11(2): 1250018.

Kahriman, N., Ünver, Y., Akçay, H. T., Gülmez, A. D., Durmuş, M. & Değirmencioğlu, Ȋ. (2020). Photophysical and photochemical study on novel axially chalcone substituted silicon (IV) phthalocyanines. Journal of Molecular Structure, 1200, : 127132(1-10).

Kämpfe, A., Brendler, E., Kroke, E. & Wagler, J. (2015). Tp*Cu(I)-CN-SiL2-NC-Cu(I)Tp* - a hexacoordinate Si-complex as connector for redox active metals via π-conjugated ligands, Dalton Transactions, 44, pp. 4744 - 4750.

Korkmaz, E., Ahmetali, E., Atmaca, G. Y., Karaoğlu, H. P., Erdoğmuş, A. & Koçak, M. B. (2020). Investigation of photophysical and photochemical properties of phthalocyanines bearing fluorinated groups. Monatshefte für Chemie, 151, pp. 181-190.

Kumar, A., Prajapati, P. K., Aathira, M. S., Bansiwal, A., Boukherroub, R. & Jain, S. L. (2019). Highly improved photoreduction of carbon dioxide to methanol using cobalt phthalocyanine grafted to graphitic carbon nitride as photocatalyst under visible light irradiation. Journal of Colloid Interface Science, 543, pp. 201- 213.

Lee, C., Yang, W. & Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, pp. 785 – 789.

Levine, R. D. (1979). Free energy of activation. Definition, properties, and dependent variables with special reference to “linear” free energy relation, Journal of Physical Chemistry, 83, 1, pp. 159- 170.

Lo, P-C., Rodríguez-Morgade, M. S., Pandey, R. K., Ng, D. K. P., Torres, T. & Dumoulin, F. (2020). The unique features and promises of phthalocyanines as advanced photosensitizers for photodynamic therapy of cancer. Chemical Society Reviews, 49, pp. 1041 – 1056.

Madhuri, K. P. & John, N. S. (2022). Chapter 18 – Metal phthalocyanines and their composites with carbon nanostructures for applications in energy generation storage, in: Design, fabrication, and characterization of multifunctional nanomaterials. Micro and Nanotechnologies, 401 – 448.

Maeda, S., Harabuchi, Y., Ono, Y., Taketsugu, T. & Morokuma, K. (2015). Intrinsic reaction coordinate: Calculation, bifurcation, and automated search. International Journal of Quantum Chemical, 115, 5, pp. 258 – 269.

Mafukidze, D. M., Sindello, A. & Nyokong T. (2019). Spectroscopic characterization and photodynamic antimicrobial chemotherapy of phthalocyanine-silver triangular nanoprism conjugates when supported on asymmetric polymer membranes. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 219, pp..333 – 345.

Matlou, G. G. & Nyokong, T. (2020). Photophysico-chemical properties and photoinactivation of Staphylococcus Aureus using zinc phthalocyanines linked silver nanoparticles conjugates. Dyes and Pigments, 108237, (1 – 11).

Mazzone, G., Alberto, M. E., De Simone, B. C., Marino, T. & Russo, N. (2016). Can Expanded Bacteriochlorins act as photosensitizers in photodynamic Therapy? Good news from density functional theory computations. Molecules, 21: 288.

Ndebele, N. & Nyokong, T. (2023). The use of carbon-based nanomaterials conjugated to cobalt phthalocyanine complex in the electrochemical detection of nitrite. Diamond and Related Materials, 132, 109672.

Nitsch, J., Kleeberg, C., Fröhlich, R. & Steffen, A. (2015). Luminescent copper(I) halide andpseudohalide phenanthroline complexes revisited: simple structures, complicated, excited state behavior, Dalton Transactions, 44, pp. 6944 - 6960.

Obafemi, C. A., Fadare, O. A., Jasinski, J. P., Millikan, S. P., Obuotor, E. M., Iwalewa, E. O., Famuyiwa, S. O., Sanusi, K., Yilmaz, Y. & Ceylan, Ü. (2018). Microwave-assisted synthesis, structural characterization, DFT studies, antibacterial and antioxidant activity of 2-methyl-4-oxo-1,2,3,4-zetrahydroquin -azoline-2-carboxylic acid. Journal of Molecular Structure 1155, pp. 610 – 622.

Pan, K., Tang, X., Qu, G., Tang, H., Wei, K. & Lv, J. (2023). Mesoporous silica/iron phthalocyanine light-driven nanomaterials for efficient removal of Pb2+ ions from wastewater. Applied Nano Materials, 6, 14, pp. 12816 – 12827.

Salzner, U. (2010). Modeling photoelectron spectra of conjugated oligomers with time-dependent density functional theory, Journal of Physical Chemistry, A, 114, pp. 10997-11007.

Sánchez, C. O. & Rivas, B. L. (2002). Poly(1,2-diaminobenzene) and poly(1,3-Diamino benzene): synthesis, characterization, and properties. Journal of Applied Polymer Science, 85, pp. 2564 – 2572.

Sanusi, K., Amuhaya, E. K. & Nyokong, T. (2014). Enhanced optical limiting behavior of an indium phthalocyanine-single-walled carbon nanotube composite: an investigation of the effects of solvents. Journal of Physical Chemistry C 118, pp. 7057-7069.

Sanusi, K., Antunes, E. & Nyokong, T. (2014). Optical nonlinearities in non-peripherally substituted pyridyloxy phthalocyanines: a combined effect of symmetry, ring-strain and demetallation. Dalton Transactions, 43, 999-1010.

Sanusi, K., Ceylan, Ü., Yilmaz, Y. & George, R. C. (2020). A DFT/TD-DFT study on the possible replacement of Ru(II) with Fe(II) in phthalocyanine-based dye-sensitized solar cells. Structural Chemistry, 31, pp. 2301 – 2311.

Sanusi, K., Khene, S. & Nyokong, T. (2014). Enhanced optical limiting performance in phthalocyanine-quantum dot nanocomposites by free-carrier absorption mechanism. Optical Materials, 37, pp. 572-582.

Sanusi, K. & Nyokong, T. (2014). Indium phthalocyanine-CdSe/ZnS quantum dots nanocomposites showing size dependent and near ideal optical limiting behavior. Optical Materials, 38, pp. 17-23.

Sanusi, K., Stone, J. M. & Nyokong, T. (2015). Nonlinear optical behavior of indium-phthalocyanine tethered to magnetite or silica nanoparticles. New J. Chem. 39, pp. 1665 – 1677.

Sayyah, S. M., Khaliel, A. B., Aboud, A. A. & Mohamed, S. M. (2014). Chemical polymerization kinetics of poly-o-phenylenediamine and characterization of the obtained polymer in aqueous hydrochloric acid solution using K2Cr2O7 as oxidizing agent. International Journal of Polymer Science, 2014, pp. 1-16. http://dx.doi.org/10.1155/2014/520910.

Siddle, J. S., Ward, R. M., Collings, J. C., Rutter, S. R., Porrès, L., Applegarth, L., Beeby, A., Batsanov, A. S., Thompson, A. L., Howard, J. A. K., Boucekkine, A., Costuas, K., Halet, J. F. & Marder, T. B. (2007). Synthesis, photophysics and molecular structures of luminescent 2,5-bis(phenylethynyl)thiophenes (BPETs), New Journal of Chemistry, 31: 841-851.

Song, P. & Ma, F. (2010). Tunable electronic structures and optical properties of fluorenone-based molecular materials by heteroatoms. Journal of Physical Chemistry A 114, pp. 2230-2234.

Subhan, M. A., Perveen, F., Filipczak, N., Yalamarty, S. S. K. & Torchilin, V. P. (2023). Approaches to improve EPR-based drug delivery for cancer therapy and diagnosis. Journal of Personalized Medicine, 13, 389. https://doi.org/10.3390/jpm13030389.

Suleimanov, Y. V. & Green, W. H. (2015). Automated discovery of elementary chemical reaction steps using freezing string and Berny optimization methods. Journal of Chemical Theory and Computation, 11, 9, pp. 4248 – 4259.

Tayfuroğlu, Ö., Kiliçarslan, F. A., Atmaca, G. Y. & Erdoğmuş, A. (2018). Synthesis,

characterization, of new phthalocyanines and investigation of photophysical, photochemical properties and theoretical studies. Journal of Porphyrins and Phthalocyanines, 22: 250 - 265.

Tsai, F. -C., Chang, C. -C., Liu, C. -L., Chen, W. C. & Jenekhe, S. A. (2005). New thiophene-linked conjugated poly (azomethines): Theoretical electronic structure, synthesis, and properties. Macromolecules, 38, pp. 1958-1966.

Tunç, G., Güzel, E., Şişman, Ì., Ahsen, V., árdenas-Jirón, G. & Gürek, A. G. (2019). Effect of new asymmetrical Zn(II) phthalocyanines on the photovoltaic performance of a dye-sensitized solar cell. New Journal of Chemistry, 43, pp. 14390 – 14401.

Vijay, D., Varathan, E. & Subramanian, V. (2013). Theoretical design of core modified (oxa and thia) porphyrin based organic dyes with bridging thiophene linkers. Journal of Materials Chemistry A, 1, pp. 4358-4369.

Yang, S., Yu, Y., Gao, X., Zhang, Z. & Wang, F. (2021). Recent advances in electrocatalysis with phthalocyanine. Chemical Society Reviews, 50, pp. 12985-13011.

Yüksel, F., Gürek, A. G., Lebrun, C. & Ahsen, V. (2005). Synthesis and solvent effects on the spectroscopic properties of octatosylamido phthalocyanines. New Journal of Chemistry, 29, pp. 726 – 732.

Yüksel, F., Tuncel, S. & Ahsen, V. (2008). Synthesis and characterizations of peripheral octa-amino and octa-amidophthalocyanines. Journal of Porphyrins and Phthalocyanines, 12, pp. 123 – 130.

Yüzeroğlu, M., Karaoğlan, G. K., Köse, G. G. & Erdoğmuş, A. (2021). Synthesis of new zinc phthalocyanines including Schiff base and halogen; photophysical, photochemical, and fluorescence quenching studies. Journal of Molecular Structure 1238 (2021) 130423(1 – 10).

Zhang, X-F., Li, X., Niu, L., Sun, L. & Liu, L. (2009). Charge Transfer Photophysics of Tetra(α-amino) Zinc Phthalocyanine. Journal of Fluorescence, 19, pp. 947−954.

Zhang, X, F. & Xu, H. (1994). Synthesis and photophysical properties of substituted zinc phthalocyanines. Chemical Research in Chinese Universities, 15, pp. 917 – 921.

Zi, Y., Yang, K., He, J., Wu, Z., Liu, J. & Zhang, W. (2022). Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Advanced Drug Delivery 188: 114449.

Downloads

Published

2024-08-02