The Geochemistry and Petrogenesis of the Iron-Bearing Sediments of Mfamosing, Southeastern (SE), Nigeria: Evidence from Major Oxides and Its Implication for Industrial Utilization

Authors

  • Benjamin Odey Omang University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
  • Temple Okah Arikpo University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
  • Eyong Gods’will Abam University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
  • Godwin Terwase Kave University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
  • Asinya Enah Asinya University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
  • Anthony Adesoji Onasanwo University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria

Keywords:

Geochemistry, Petrogenesis, Iron ore, Mfamosing, Calabar Flank

Abstract

Communication in Physical Sciences, 2024, 11(4): 767-784

Authors: Benjamin Odey Omang *, Temple Okah Arikpo, Eyong Gods’will Abam, Asinya Enah Asinya, Godwin Terwase Kave and Anthony Adesoji Onasanwo

Iron ore, a critical resource for global industrial activities, plays a pivotal role in driving economic development and sustaining essential sectors such as construction, manufacturing, and infrastructure. Nigeria is endowed with substantial iron ore reserves, including the Mfamosing area, which has recently garnered attention for its untapped potential. However, limited comprehensive studies hinder a clear understanding of the iron ore occurrences and their industrial viability. This study addresses this gap by investigating the geochemistry of the iron-bearing metasediments in the Mfamosing area, utilizing X-ray fluorescence (XRF) to analyze major oxides. Field and laboratory studies were conducted, involving the collection of twenty-five (25) sediment samples from the Mfamosing area and subsequent XRF analysis. The results revealed a high content of Fe2O3 (hematite) in the range of 62.64–80.45 wt.%, indicating the dominance of iron-rich minerals. The presence of SiO2, Al2O3, and other oxides suggests potential gangue minerals and aids in understanding the ore's composition. The petrogenesis study compares the geochemical characteristics of the Mfamosing iron ore with other iron-bearing formations globally. The findings indicate a sedimentary origin, with hydrothermal influence evidenced by Fe/Al and Fe/Si ratios. The low concentration of detrital materials further supports a primarily seawater-derived iron source. The iron ore has low concentrations of deleterious elements. Classification based on Fe2O3 content places most samples in the high-grade category, making them suitable as a primary raw material for steel production. Comparisons with other iron formations in Nigeria and worldwide affirm the Mfamosing iron ore's competitiveness on a global scale.

Downloads

Download data is not yet available.

Author Biographies

Benjamin Odey Omang, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria

Department of Geology

Temple Okah Arikpo, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria

Department of Geology

Eyong Gods’will Abam, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria

Department of Geology

Godwin Terwase Kave, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria

Department of Geology

Asinya Enah Asinya, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria

Department of Geology

Anthony Adesoji Onasanwo, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria

Department of Geology

References

Adamu, C. I., Omang, B. O., Oyetade, O. P., Johnson, O., & Nganje, T. N. (2021). Trace and rare earth element geochemistry of the black and grey shales of the Calabar flank, Southeastern Nigeria: constraints on the depositional environment and the degree of metal enrichment. Acta Geochimica, 40, 312-324.

Adedeji, F. A., & Sale, F. R. (1984). Characterization and reducibility of Itakpe and Agbaja (Nigerian) iron ores. Clay Minerals, 19(5), 843–856. https://doi.org/10.1180/claymin.1984.019.5.12

Adekoya, J. A. (1998). The geology and geochemistry of the Maru Banded Iron-Formation, northwestern Nigeria. Journal of African Earth Sciences, 27(2), 241–257. https://doi.org/10.1016/S0899-5362(98)00059-1

Angerer, T., Thorne, W., Hagemann, S. G., Tribus, M., Evans, N. J., & Savard, D. (2022). Iron oxide chemistry supports a multistage hydrothermal genesis of BIF-hosted hematite ore in the Mt. Tom Price and Mt. Whaleback deposits. Ore Geology Reviews, 144, 104840. https://doi.org/10.1016/j.oregeorev.2022.104840

Anoh, N. O., & Petters, S. W. (2014). Preliminary investigation of Late Turonian-Early Campanian shallow marine foraminifera of the Mungo River/Logbadjeck Formation, NW Douala Basin, Cameroon. Journal of African Earth Sciences, 99, 442–451. https://doi.org/10.1016/j.jafrearsci.2013.11.003

Bafon, T. G., Bolarinwa, A. T., Suh, C. E., Oljira, T., Bedada, B. A., Ngoran, G. N., Ateh, K. I., Djoumbissie, B. M. K., & Ngang, C. T. (2023). Petrogenetic characterization of the host rocks of the Sanaga iron ore prospect, southern Cameroon. Acta Geochimica, 42(2), 195–220. https://doi.org/10.1007/s11631-022-00574-7

Bekker, A., Planavsky, N. J., Krapež, B., Rasmussen, B., Hofmann, A., Slack, J. F., Rouxel, O. J., & Konhauser, K. O. (2014). Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry. In Treatise on Geochemistry (pp. 561–628). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00719-1

Bekker, A., Slack, J. F., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, K. O., & Rouxel, O. J. (2010). Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Economic Geology, 105(3), 467–508. https://doi.org/10.2113/gsecongeo.105.3.467

Bolarinwa, A. T. (2017). Petrography and Geochemistry of the Banded Iron Formation of the Gangfelum Area, Northeastern Nigeria. Earth Science Research, 7(1), 25. https://doi.org/10.5539/esr.v7n1p25

Clout, J. M. F., & Simonson, B. M. (2005). Precambrian Iron Formations and Iron Formation-Hosted Iron Ore Deposits. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, & J. P. Richards, One Hundredth Anniversary Volume. Society of Economic Geologists. https://doi.org/10.5382/AV100.20

Cox, G. M., Halverson, G. P., Minarik, W. G., Le Heron, D. P., Macdonald, F. A., Bellefroid, E. J., & Strauss, J. V. (2013). Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance. Chemical Geology, 362, 232–249. https://doi.org/10.1016/j.chemgeo.2013.08.002

Das, B., Prakash, S., Reddy, P. S. R., & Misra, V. N. (2007). An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 50(1), 40–57. https://doi.org/10.1016/j.resconrec.2006.05.008

Edegbai, A. J., Schwark, L., & Oboh-Ikuenobe, F. E. (2019). A review of the latest Cenomanian to Maastrichtian geological evolution of Nigeria and its stratigraphic and paleogeographic implications. Journal of African Earth Sciences, 150, 823–837. https://doi.org/10.1016/j.jafrearsci.2018.10.007

Ekwok, S. E., Akpan, A. E., & Ebong, E. D. (2019). Enhancement and modelling of aeromagnetic data of some inland basins, southeastern Nigeria. Journal of African Earth Sciences, 155, 43–53. https://doi.org/10.1016/j.jafrearsci.2019.02.030

Ekwok, S. E., Akpan, A. E., & Ebong, E. D. (2021). Assessment of crustal structures by gravity and magnetic methods in the Calabar Flank and adjoining areas of Southeastern Nigeria—A case study. Arabian Journal of Geosciences, 14(4), 308. https://doi.org/10.1007/s12517-021-06696-1

Fiege, J. L. (2019). The formation of Kiruna-type iron oxide-apatite deposits: A new genetic model. https://doi.org/10.15488/5496

Gourcerol, B., Thurston, P. C., Kontak, D. J., Côté-Mantha, O., & Biczok, J. (2016). Depositional setting of Algoma-type banded iron formation. Precambrian Research, 281, 47–79. https://doi.org/10.1016/j.precamres.2016.04.019

Hagemann, S. G., Angerer, T., Duuring, P., Rosière, C. A., Figueiredo E Silva, R. C., Lobato, L., Hensler, A. S., & Walde, D. H. G. (2016). BIF-hosted iron mineral system: A review. Ore Geology Reviews, 76, 317–359. https://doi.org/10.1016/j.oregeorev.2015.11.004

Harry, T. A. (2022). Upper-Cretaceous and Paleocene Biostratigraphy of Nkporo Shales, Calabar Flank, Southern Benue Trough. Journal of Nature, Science & Technology, 2(1), 1–5. https://doi.org/10.36937/janset.2022.6572

Hussin, A., Rahman, A. H. A., & Ibrahim, K. Z. (2018). Mineralogy and geochemistry of clays from Malaysia and its industrial application. IOP Conference Series: Earth and Environmental Science, 212, 012040. https://doi.org/10.1088/1755-1315/212/1/012040

Jansson, N. F., & Allen, R. L. (2011). The origin of skarn beds, Ryllshyttan Zn–Pb–Ag + magnetite deposit, Bergslagen, Sweden. Mineralogy and Petrology, 103(1–4), 49–78. https://doi.org/10.1007/s00710-011-0154-x

Jean-Lavenir, N. M., Cyrille, S., Cedric, D. M., Estelle, N. E. T. P., Mukete, C. D., & Gloire, K. T. S. (2023). Petrogenetic Characterization of Banded Iron Formations of Bidjouka Area, Nyong Complex, Southern Cameroon: Implication for the Origin and Depositional Environment of Paleoproterozic Bifs [Preprint]. SSRN. https://doi.org/10.2139/ssrn.4492338

Kimberley, M. M. (1978). Paleoenvironmental classification of iron formations. Economic Geology, 73(2), 215–229. https://doi.org/10.2113/gsecongeo.73.2.215

Konhauser, K. O., Planavsky, N. J., Hardisty, D. S., Robbins, L. J., Warchola, T. J., Haugaard, R., Lalonde, S. V., Partin, C. A., Oonk, P. B. H.,

Tsikos, H., Lyons, T. W., Bekker, A., & Johnson, C. M. (2017). Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Science Reviews, 172, 140–177. https://doi.org/10.1016/j.earscirev.2017.06.012

Li, F., Zhu, X., Ding, H., & Zhang, K. (2022). Local hydrothermal sources for Superior-type iron formations: Insights from the Animikie Basin. Precambrian Research, 377, 106736. https://doi.org/10.1016/j.precamres.2022.106736

Liu, B., Zhang, Y., Lu, M., Su, Z., Li, G., & Jiang, T. (2019). Extraction and separation of manganese and iron from ferruginous manganese ores: A review. Minerals Engineering, 131, 286–303. https://doi.org/10.1016/j.mineng.2018.11.016

Madondo, J., Canet, C., Núñez-Useche, F., & González-Partida, E. (2021). Geology and geochemistry of jasperoids from the ‘Montaña de Manganeso’ district, San Luis Potosí, north-central Mexico. Revista Mexicana de Ciencias Geológicas, 38(3), 193–209. https://doi.org/10.22201/cgeo.20072902e.2021.3.1651

Marion, K. W. M., Djibril, K. N. G., Guimollaire, N. D., & Patrick, A. K. (2021). Petrogenesis and U–Pb zircon dating of amphibolite in the

Mewengo iron deposit, Nyong series, Cameroon: Fingerprints of iron depositional geotectonic setting. Arabian Journal of Geosciences, 14(10), 872. https://doi.org/10.1007/s12517-021-07235-8

Minitti, M. E., Lane, M. D., & Bishop, J. L. (2005). A new hematite formation mechanism for Mars. Meteoritics & Planetary Science, 40(1), 55–69. https://doi.org/10.1111/j.1945-5100.2005.tb00364.x

Moisescu, C., Ardelean, I. I., & Benning, L. G. (2014). The effect and role of environmental conditions on magnetosome synthesis. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00049

Nanda, S. K., & Beura, D. (2021). Implicating the Origin and Depositional Environment of Banded Iron Formation (BIF) of Bonai-Keonjhar Iron Ore Belt in Eastern India from its Petrography and Geochemistry. Geology of Ore Deposits, 63(6), 497–514. https://doi.org/10.1134/S1075701521060076

Ndime, E. N., Ganno, S., Soh Tamehe, L., & Nzenti, J. P. (2018). Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa. Journal of African Earth Sciences, 148, 80–98. https://doi.org/10.1016/j.jafrearsci.2018.06.007

Nkuna, R., Ijoma, G. N., Matambo, T. S., & Chimwani, N. (2022). Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies. Minerals, 12(5), 506. https://doi.org/10.3390/min12050506

Ochromowicz, K., Aasly, K., & Kowalczuk, P. (2021). Recent Advancements in Metallurgical Processing of Marine Minerals. Minerals, 11(12), 1437. https://doi.org/10.3390/min11121437

Okon, E. E., Kudamnya, E. A., Oyeyemi, K. D., Omang, B. O., Ojo, O., & Metwaly, M. (2022). Field Observations and Geophysical Research Applied to the Detection of Manganese (Mn) Deposits in the Eastern Part of Oban Massif, South-Eastern Nigeria: An Integrated Approach. Minerals, 12(10), 1250.

Omang, B.O., Effiom, H., Omeka, E., Oko, E., Asinya, A., Ojikutu, T., & Kave, T. (2023). Trace element geochemical imprints and multi-path health risk assessment of potentially toxic elements in soils from the polymetallic area of tashan-jatau, northwestern nigeria. Global Journal of Geological Sciences, 21(1), 91-115

Omang B.O, Asinya E.A, Udinmwen E, Oyetade O.P: Structural framework and deformation episodes in the Igarra schist belt southwestern Nigeria. Global Journal of Geological Sciences vol20(1),1-17 2022 DOI: 10.4314/gjgs.v20i1.1

Omang, B. O., Omeka, M. E., Asinya, E. A., Oko, P. E., & Aluma, V. C. (2023). Application of GIS and feedforward back-propagated ANN models for predicting the ecological and health risk of potentially toxic elements in soils in Northwestern Nigeria. Environmental Geochemistry and Health, 1-33

Omietimi, E., Lenhardt, N., & Bumby, A. (2022). Sedimentology, paleoclimate proxy, paleoenvironment proxies (p. 145295 Bytes) [dataset]. University of Pretoria. https://doi.org/10.25403/UPRESEARCHDATA.21510903.V1

Omotunde, V. B. (2020). Mineralogy and Geochemistry of Hydrothermally altered Talcose rocks from Ila Orangun-Oyan areas, part of Southwestern Nigeria. Indian Journal of Science and Technology, 13(40), 4244–4261. https://doi.org/10.17485/IJST/v13i40.1686

Öztürk, H., Kasapçı, C., Cansu, Z., & Hanilçi, N. (2016). Geochemical characteristics of iron ore deposits in central eastern Turkey: An approach to their genesis. International Geology Review, 58(13), 1673–1690. https://doi.org/10.1080/00206814.2016.1183236

Planavsky, N., Rouxel, O. J., Bekker, A., Hofmann, A., Little, C. T. S., & Lyons, T. W. (2012). Iron isotope composition of some Archean and Proterozoic iron formations. Geochimica et Cosmochimica Acta, 80, 158–169. https://doi.org/10.1016/j.gca.2011.12.001

Posth, N. R., Canfield, D. E., & Kappler, A. (2014). Biogenic Fe(III) minerals: From formation to diagenesis and preservation in the rock record. Earth-Science Reviews, 135, 103–121. https://doi.org/10.1016/j.earscirev.2014.03.012

Reddy, K. R., Gopakumar, A., & Chetri, J. K. (2019). Critical review of applications of iron and steel slags for carbon sequestration and environmental remediation. Reviews in Environmental Science and Bio/Technology, 18(1), 127–152. https://doi.org/10.1007/s11157-018-09490-w

Riposan, I., Chisamera, M., & Stan, S. (2013). Control of Surface Graphite Degeneration in Ductile Iron for Windmill Applications. International Journal of Metalcasting, 7(1), 9–20. https://doi.org/10.1007/BF03355540

Rojas, P. A., Barra, F., Deditius, A., Reich, M., Simon, A., Roberts, M., & Rojo, M. (2018). New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile. Ore Geology Reviews, 93, 413–435. https://doi.org/10.1016/j.oregeorev.2018.01.003

Santoro, L., Putzolu, F., Mondillo, N., Boni, M., & Herrington, R. (2022). Trace element geochemistry of iron-(oxy)-hydroxides in Ni(Co)-laterites: Review, new data and implications for ore forming processes. Ore Geology Reviews, 140, 104501. https://doi.org/10.1016/j.oregeorev.2021.104501

Skirrow, R. G. (2022). Iron oxide copper-gold (IOCG) deposits – A review (part 1): Settings, mineralogy, ore geochemistry and classification. Ore Geology Reviews, 140, 104569. https://doi.org/10.1016/j.oregeorev.2021.104569

Sun, S., & Li, Y.-L. (2017). Geneses and evolutions of iron-bearing minerals in banded iron formations of >3760 to ca. 2200 million-year-old: Constraints from electron microscopic, X-ray diffraction and Mössbauer spectroscopic investigations. Precambrian Research, 289, 1–17. https://doi.org/10.1016/j.precamres.2016.11.010

Taner, M. F., & Chemam, M. (2015). Algoma-type banded iron formation (BIF), Abitibi Greenstone belt, Quebec, Canada. Ore Geology Reviews, 70, 31–46. https://doi.org/10.1016/j.oregeorev.2015.03.016

Tchouakui, R. D. K., Soh Tamehe, L., Ganno, S., Nzepang Tankwa, M., & Nzenti, J. P. (2022). Petrography and geochemistry of the Moloundou pelite–chert complex and high-grade iron ore, southeast Cameroon: Implications for provenance and tectonic setting. Arabian Journal of Geosciences, 15(23), 1731. https://doi.org/10.1007/s12517-022-10981-y

Teutsong, T., Temga, J. P., Enyegue, A. A., Feuwo, N. N., & Bitom, D. (2021). Petrographic and geochemical characterization of weathered materials developed on BIF from the Mamelles iron ore deposit in the Nyong unit, South-West Cameroon. Acta Geochimica, 40(2), 163–175. https://doi.org/10.1007/s11631-020-00421-7

Thomas Angerer, Hagemann, S. G., & Walde, D. H. G. (2021). Diagenetic and supergene ore forming processes in the iron formation of the Neoproterozoic Jacadigo Group, Corumbá, Brazil. Journal of South American Earth Sciences, 105, 102902. https://doi.org/10.1016/j.jsames.2020.102902

Thombare, N., Jha, U., Mishra, S., & Siddiqui, M. Z. (2016). Guar gum as a promising starting material for diverse applications: A review. International Journal of Biological Macromolecules, 88, 361–372. https://doi.org/10.1016/j.ijbiomac.2016.04.001

Uzoegbu, M. U., Obaje, N. G., & Omang, B. O. (2023). Pyrolytic and provenance evaluation of organic matter from the tertiary niger delta basin, nigeria: implication on hydrocarbon generation. Global Journal of Geological Sciences, 21(1), 51-67

Vishiti, A.; Suh, C.E.; Ngatcha, R.B.; Melchiorre, E.B.; Shemang, E.M.; Omang, B.O.; Ngang, T.C.; Valdez, F.C.; Sekem, S.G. Soil Geochemistry Combined with Particulate Gold Microchemistry Provides Evidence of Eluvial Gold Genesis and Anthropogenic Hg Use in Eastern Cameroon Goldfields. Minerals 2024, 14, 567. hps://doi.org/10.3390/ min14060567

Vural, A. (2023). An evaluation of elemental enrichment in rocks: In the case of Kısacık and its neighborhood (Ayvacık, Çanakkale/Türkiye). Journal of Geography and Cartography, 6(1), 1850. https://doi.org/10.24294/jgc.v6i1.1850

Wang, C., Zhang, L., Lan, C., & Dai, Y. (2014). Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: Implications for their origin and tectonic setting. Precambrian Research, 255, 603–626. https://doi.org/10.1016/j.precamres.2014.08.002

Xing, Y., Brugger, J., Etschmann, B., Tomkins, A. G., Frierdich, A. J., & Fang, X. (2021). Trace element catalyses mineral replacement reactions and facilitates ore formation. Nature Communications, 12(1), 1388. https://doi.org/10.1038/s41467-021-21684-5

Yang, X., Zhang, Z., Guo, S., Chen, J., & Wang, D. (2016). Geochronological and geochemical studies of the metasedimentary rocks and diabase from the Jingtieshan deposit, North Qilian, NW China: Constraints on the associated banded iron formations. Ore Geology Reviews, 73, 42–58. https://doi.org/10.1016/j.oregeorev.2015.10.018

Yin, J., Li, H., & Xiao, K. (2023). Origin of Banded Iron Formations: Links with Paleoclimate, Paleoenvironment, and Major Geological Processes. Minerals, 13(4), 547. https://doi.org/10.3390/min13040547

Zhang, Z., Hou, T., Santosh, M., Li, H., Li, J., Zhang, Z., Song, X., & Wang, M. (2014). Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57, 247–263. https://doi.org/10.1016/j.oregeorev.2013.08.021.

Downloads

Published

2024-08-26