The Geochemistry and Petrogenesis of the Iron-Bearing Sediments of Mfamosing, Southeastern (SE), Nigeria: Evidence from Major Oxides and Its Implication for Industrial Utilization
Keywords:
Geochemistry, Petrogenesis, Iron ore, Mfamosing, Calabar FlankAbstract
Communication in Physical Sciences, 2024, 11(4): 767-784
Authors: Benjamin Odey Omang *, Temple Okah Arikpo, Eyong Gods’will Abam, Asinya Enah Asinya, Godwin Terwase Kave and Anthony Adesoji Onasanwo
Iron ore, a critical resource for global industrial activities, plays a pivotal role in driving economic development and sustaining essential sectors such as construction, manufacturing, and infrastructure. Nigeria is endowed with substantial iron ore reserves, including the Mfamosing area, which has recently garnered attention for its untapped potential. However, limited comprehensive studies hinder a clear understanding of the iron ore occurrences and their industrial viability. This study addresses this gap by investigating the geochemistry of the iron-bearing metasediments in the Mfamosing area, utilizing X-ray fluorescence (XRF) to analyze major oxides. Field and laboratory studies were conducted, involving the collection of twenty-five (25) sediment samples from the Mfamosing area and subsequent XRF analysis. The results revealed a high content of Fe2O3 (hematite) in the range of 62.64–80.45 wt.%, indicating the dominance of iron-rich minerals. The presence of SiO2, Al2O3, and other oxides suggests potential gangue minerals and aids in understanding the ore's composition. The petrogenesis study compares the geochemical characteristics of the Mfamosing iron ore with other iron-bearing formations globally. The findings indicate a sedimentary origin, with hydrothermal influence evidenced by Fe/Al and Fe/Si ratios. The low concentration of detrital materials further supports a primarily seawater-derived iron source. The iron ore has low concentrations of deleterious elements. Classification based on Fe2O3 content places most samples in the high-grade category, making them suitable as a primary raw material for steel production. Comparisons with other iron formations in Nigeria and worldwide affirm the Mfamosing iron ore's competitiveness on a global scale.
Downloads
References
Adamu, C. I., Omang, B. O., Oyetade, O. P., Johnson, O., & Nganje, T. N. (2021). Trace and rare earth element geochemistry of the black and grey shales of the Calabar flank, Southeastern Nigeria: constraints on the depositional environment and the degree of metal enrichment. Acta Geochimica, 40, 312-324.
Adedeji, F. A., & Sale, F. R. (1984). Characterization and reducibility of Itakpe and Agbaja (Nigerian) iron ores. Clay Minerals, 19(5), 843–856. https://doi.org/10.1180/claymin.1984.019.5.12
Adekoya, J. A. (1998). The geology and geochemistry of the Maru Banded Iron-Formation, northwestern Nigeria. Journal of African Earth Sciences, 27(2), 241–257. https://doi.org/10.1016/S0899-5362(98)00059-1
Angerer, T., Thorne, W., Hagemann, S. G., Tribus, M., Evans, N. J., & Savard, D. (2022). Iron oxide chemistry supports a multistage hydrothermal genesis of BIF-hosted hematite ore in the Mt. Tom Price and Mt. Whaleback deposits. Ore Geology Reviews, 144, 104840. https://doi.org/10.1016/j.oregeorev.2022.104840
Anoh, N. O., & Petters, S. W. (2014). Preliminary investigation of Late Turonian-Early Campanian shallow marine foraminifera of the Mungo River/Logbadjeck Formation, NW Douala Basin, Cameroon. Journal of African Earth Sciences, 99, 442–451. https://doi.org/10.1016/j.jafrearsci.2013.11.003
Bafon, T. G., Bolarinwa, A. T., Suh, C. E., Oljira, T., Bedada, B. A., Ngoran, G. N., Ateh, K. I., Djoumbissie, B. M. K., & Ngang, C. T. (2023). Petrogenetic characterization of the host rocks of the Sanaga iron ore prospect, southern Cameroon. Acta Geochimica, 42(2), 195–220. https://doi.org/10.1007/s11631-022-00574-7
Bekker, A., Planavsky, N. J., Krapež, B., Rasmussen, B., Hofmann, A., Slack, J. F., Rouxel, O. J., & Konhauser, K. O. (2014). Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry. In Treatise on Geochemistry (pp. 561–628). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00719-1
Bekker, A., Slack, J. F., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, K. O., & Rouxel, O. J. (2010). Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Economic Geology, 105(3), 467–508. https://doi.org/10.2113/gsecongeo.105.3.467
Bolarinwa, A. T. (2017). Petrography and Geochemistry of the Banded Iron Formation of the Gangfelum Area, Northeastern Nigeria. Earth Science Research, 7(1), 25. https://doi.org/10.5539/esr.v7n1p25
Clout, J. M. F., & Simonson, B. M. (2005). Precambrian Iron Formations and Iron Formation-Hosted Iron Ore Deposits. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, & J. P. Richards, One Hundredth Anniversary Volume. Society of Economic Geologists. https://doi.org/10.5382/AV100.20
Cox, G. M., Halverson, G. P., Minarik, W. G., Le Heron, D. P., Macdonald, F. A., Bellefroid, E. J., & Strauss, J. V. (2013). Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance. Chemical Geology, 362, 232–249. https://doi.org/10.1016/j.chemgeo.2013.08.002
Das, B., Prakash, S., Reddy, P. S. R., & Misra, V. N. (2007). An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 50(1), 40–57. https://doi.org/10.1016/j.resconrec.2006.05.008
Edegbai, A. J., Schwark, L., & Oboh-Ikuenobe, F. E. (2019). A review of the latest Cenomanian to Maastrichtian geological evolution of Nigeria and its stratigraphic and paleogeographic implications. Journal of African Earth Sciences, 150, 823–837. https://doi.org/10.1016/j.jafrearsci.2018.10.007
Ekwok, S. E., Akpan, A. E., & Ebong, E. D. (2019). Enhancement and modelling of aeromagnetic data of some inland basins, southeastern Nigeria. Journal of African Earth Sciences, 155, 43–53. https://doi.org/10.1016/j.jafrearsci.2019.02.030
Ekwok, S. E., Akpan, A. E., & Ebong, E. D. (2021). Assessment of crustal structures by gravity and magnetic methods in the Calabar Flank and adjoining areas of Southeastern Nigeria—A case study. Arabian Journal of Geosciences, 14(4), 308. https://doi.org/10.1007/s12517-021-06696-1
Fiege, J. L. (2019). The formation of Kiruna-type iron oxide-apatite deposits: A new genetic model. https://doi.org/10.15488/5496
Gourcerol, B., Thurston, P. C., Kontak, D. J., Côté-Mantha, O., & Biczok, J. (2016). Depositional setting of Algoma-type banded iron formation. Precambrian Research, 281, 47–79. https://doi.org/10.1016/j.precamres.2016.04.019
Hagemann, S. G., Angerer, T., Duuring, P., Rosière, C. A., Figueiredo E Silva, R. C., Lobato, L., Hensler, A. S., & Walde, D. H. G. (2016). BIF-hosted iron mineral system: A review. Ore Geology Reviews, 76, 317–359. https://doi.org/10.1016/j.oregeorev.2015.11.004
Harry, T. A. (2022). Upper-Cretaceous and Paleocene Biostratigraphy of Nkporo Shales, Calabar Flank, Southern Benue Trough. Journal of Nature, Science & Technology, 2(1), 1–5. https://doi.org/10.36937/janset.2022.6572
Hussin, A., Rahman, A. H. A., & Ibrahim, K. Z. (2018). Mineralogy and geochemistry of clays from Malaysia and its industrial application. IOP Conference Series: Earth and Environmental Science, 212, 012040. https://doi.org/10.1088/1755-1315/212/1/012040
Jansson, N. F., & Allen, R. L. (2011). The origin of skarn beds, Ryllshyttan Zn–Pb–Ag + magnetite deposit, Bergslagen, Sweden. Mineralogy and Petrology, 103(1–4), 49–78. https://doi.org/10.1007/s00710-011-0154-x
Jean-Lavenir, N. M., Cyrille, S., Cedric, D. M., Estelle, N. E. T. P., Mukete, C. D., & Gloire, K. T. S. (2023). Petrogenetic Characterization of Banded Iron Formations of Bidjouka Area, Nyong Complex, Southern Cameroon: Implication for the Origin and Depositional Environment of Paleoproterozic Bifs [Preprint]. SSRN. https://doi.org/10.2139/ssrn.4492338
Kimberley, M. M. (1978). Paleoenvironmental classification of iron formations. Economic Geology, 73(2), 215–229. https://doi.org/10.2113/gsecongeo.73.2.215
Konhauser, K. O., Planavsky, N. J., Hardisty, D. S., Robbins, L. J., Warchola, T. J., Haugaard, R., Lalonde, S. V., Partin, C. A., Oonk, P. B. H.,
Tsikos, H., Lyons, T. W., Bekker, A., & Johnson, C. M. (2017). Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Science Reviews, 172, 140–177. https://doi.org/10.1016/j.earscirev.2017.06.012
Li, F., Zhu, X., Ding, H., & Zhang, K. (2022). Local hydrothermal sources for Superior-type iron formations: Insights from the Animikie Basin. Precambrian Research, 377, 106736. https://doi.org/10.1016/j.precamres.2022.106736
Liu, B., Zhang, Y., Lu, M., Su, Z., Li, G., & Jiang, T. (2019). Extraction and separation of manganese and iron from ferruginous manganese ores: A review. Minerals Engineering, 131, 286–303. https://doi.org/10.1016/j.mineng.2018.11.016
Madondo, J., Canet, C., Núñez-Useche, F., & González-Partida, E. (2021). Geology and geochemistry of jasperoids from the ‘Montaña de Manganeso’ district, San Luis Potosí, north-central Mexico. Revista Mexicana de Ciencias Geológicas, 38(3), 193–209. https://doi.org/10.22201/cgeo.20072902e.2021.3.1651
Marion, K. W. M., Djibril, K. N. G., Guimollaire, N. D., & Patrick, A. K. (2021). Petrogenesis and U–Pb zircon dating of amphibolite in the
Mewengo iron deposit, Nyong series, Cameroon: Fingerprints of iron depositional geotectonic setting. Arabian Journal of Geosciences, 14(10), 872. https://doi.org/10.1007/s12517-021-07235-8
Minitti, M. E., Lane, M. D., & Bishop, J. L. (2005). A new hematite formation mechanism for Mars. Meteoritics & Planetary Science, 40(1), 55–69. https://doi.org/10.1111/j.1945-5100.2005.tb00364.x
Moisescu, C., Ardelean, I. I., & Benning, L. G. (2014). The effect and role of environmental conditions on magnetosome synthesis. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00049
Nanda, S. K., & Beura, D. (2021). Implicating the Origin and Depositional Environment of Banded Iron Formation (BIF) of Bonai-Keonjhar Iron Ore Belt in Eastern India from its Petrography and Geochemistry. Geology of Ore Deposits, 63(6), 497–514. https://doi.org/10.1134/S1075701521060076
Ndime, E. N., Ganno, S., Soh Tamehe, L., & Nzenti, J. P. (2018). Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa. Journal of African Earth Sciences, 148, 80–98. https://doi.org/10.1016/j.jafrearsci.2018.06.007
Nkuna, R., Ijoma, G. N., Matambo, T. S., & Chimwani, N. (2022). Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies. Minerals, 12(5), 506. https://doi.org/10.3390/min12050506
Ochromowicz, K., Aasly, K., & Kowalczuk, P. (2021). Recent Advancements in Metallurgical Processing of Marine Minerals. Minerals, 11(12), 1437. https://doi.org/10.3390/min11121437
Okon, E. E., Kudamnya, E. A., Oyeyemi, K. D., Omang, B. O., Ojo, O., & Metwaly, M. (2022). Field Observations and Geophysical Research Applied to the Detection of Manganese (Mn) Deposits in the Eastern Part of Oban Massif, South-Eastern Nigeria: An Integrated Approach. Minerals, 12(10), 1250.
Omang, B.O., Effiom, H., Omeka, E., Oko, E., Asinya, A., Ojikutu, T., & Kave, T. (2023). Trace element geochemical imprints and multi-path health risk assessment of potentially toxic elements in soils from the polymetallic area of tashan-jatau, northwestern nigeria. Global Journal of Geological Sciences, 21(1), 91-115
Omang B.O, Asinya E.A, Udinmwen E, Oyetade O.P: Structural framework and deformation episodes in the Igarra schist belt southwestern Nigeria. Global Journal of Geological Sciences vol20(1),1-17 2022 DOI: 10.4314/gjgs.v20i1.1
Omang, B. O., Omeka, M. E., Asinya, E. A., Oko, P. E., & Aluma, V. C. (2023). Application of GIS and feedforward back-propagated ANN models for predicting the ecological and health risk of potentially toxic elements in soils in Northwestern Nigeria. Environmental Geochemistry and Health, 1-33
Omietimi, E., Lenhardt, N., & Bumby, A. (2022). Sedimentology, paleoclimate proxy, paleoenvironment proxies (p. 145295 Bytes) [dataset]. University of Pretoria. https://doi.org/10.25403/UPRESEARCHDATA.21510903.V1
Omotunde, V. B. (2020). Mineralogy and Geochemistry of Hydrothermally altered Talcose rocks from Ila Orangun-Oyan areas, part of Southwestern Nigeria. Indian Journal of Science and Technology, 13(40), 4244–4261. https://doi.org/10.17485/IJST/v13i40.1686
Öztürk, H., Kasapçı, C., Cansu, Z., & Hanilçi, N. (2016). Geochemical characteristics of iron ore deposits in central eastern Turkey: An approach to their genesis. International Geology Review, 58(13), 1673–1690. https://doi.org/10.1080/00206814.2016.1183236
Planavsky, N., Rouxel, O. J., Bekker, A., Hofmann, A., Little, C. T. S., & Lyons, T. W. (2012). Iron isotope composition of some Archean and Proterozoic iron formations. Geochimica et Cosmochimica Acta, 80, 158–169. https://doi.org/10.1016/j.gca.2011.12.001
Posth, N. R., Canfield, D. E., & Kappler, A. (2014). Biogenic Fe(III) minerals: From formation to diagenesis and preservation in the rock record. Earth-Science Reviews, 135, 103–121. https://doi.org/10.1016/j.earscirev.2014.03.012
Reddy, K. R., Gopakumar, A., & Chetri, J. K. (2019). Critical review of applications of iron and steel slags for carbon sequestration and environmental remediation. Reviews in Environmental Science and Bio/Technology, 18(1), 127–152. https://doi.org/10.1007/s11157-018-09490-w
Riposan, I., Chisamera, M., & Stan, S. (2013). Control of Surface Graphite Degeneration in Ductile Iron for Windmill Applications. International Journal of Metalcasting, 7(1), 9–20. https://doi.org/10.1007/BF03355540
Rojas, P. A., Barra, F., Deditius, A., Reich, M., Simon, A., Roberts, M., & Rojo, M. (2018). New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile. Ore Geology Reviews, 93, 413–435. https://doi.org/10.1016/j.oregeorev.2018.01.003
Santoro, L., Putzolu, F., Mondillo, N., Boni, M., & Herrington, R. (2022). Trace element geochemistry of iron-(oxy)-hydroxides in Ni(Co)-laterites: Review, new data and implications for ore forming processes. Ore Geology Reviews, 140, 104501. https://doi.org/10.1016/j.oregeorev.2021.104501
Skirrow, R. G. (2022). Iron oxide copper-gold (IOCG) deposits – A review (part 1): Settings, mineralogy, ore geochemistry and classification. Ore Geology Reviews, 140, 104569. https://doi.org/10.1016/j.oregeorev.2021.104569
Sun, S., & Li, Y.-L. (2017). Geneses and evolutions of iron-bearing minerals in banded iron formations of >3760 to ca. 2200 million-year-old: Constraints from electron microscopic, X-ray diffraction and Mössbauer spectroscopic investigations. Precambrian Research, 289, 1–17. https://doi.org/10.1016/j.precamres.2016.11.010
Taner, M. F., & Chemam, M. (2015). Algoma-type banded iron formation (BIF), Abitibi Greenstone belt, Quebec, Canada. Ore Geology Reviews, 70, 31–46. https://doi.org/10.1016/j.oregeorev.2015.03.016
Tchouakui, R. D. K., Soh Tamehe, L., Ganno, S., Nzepang Tankwa, M., & Nzenti, J. P. (2022). Petrography and geochemistry of the Moloundou pelite–chert complex and high-grade iron ore, southeast Cameroon: Implications for provenance and tectonic setting. Arabian Journal of Geosciences, 15(23), 1731. https://doi.org/10.1007/s12517-022-10981-y
Teutsong, T., Temga, J. P., Enyegue, A. A., Feuwo, N. N., & Bitom, D. (2021). Petrographic and geochemical characterization of weathered materials developed on BIF from the Mamelles iron ore deposit in the Nyong unit, South-West Cameroon. Acta Geochimica, 40(2), 163–175. https://doi.org/10.1007/s11631-020-00421-7
Thomas Angerer, Hagemann, S. G., & Walde, D. H. G. (2021). Diagenetic and supergene ore forming processes in the iron formation of the Neoproterozoic Jacadigo Group, Corumbá, Brazil. Journal of South American Earth Sciences, 105, 102902. https://doi.org/10.1016/j.jsames.2020.102902
Thombare, N., Jha, U., Mishra, S., & Siddiqui, M. Z. (2016). Guar gum as a promising starting material for diverse applications: A review. International Journal of Biological Macromolecules, 88, 361–372. https://doi.org/10.1016/j.ijbiomac.2016.04.001
Uzoegbu, M. U., Obaje, N. G., & Omang, B. O. (2023). Pyrolytic and provenance evaluation of organic matter from the tertiary niger delta basin, nigeria: implication on hydrocarbon generation. Global Journal of Geological Sciences, 21(1), 51-67
Vishiti, A.; Suh, C.E.; Ngatcha, R.B.; Melchiorre, E.B.; Shemang, E.M.; Omang, B.O.; Ngang, T.C.; Valdez, F.C.; Sekem, S.G. Soil Geochemistry Combined with Particulate Gold Microchemistry Provides Evidence of Eluvial Gold Genesis and Anthropogenic Hg Use in Eastern Cameroon Goldfields. Minerals 2024, 14, 567. hps://doi.org/10.3390/ min14060567
Vural, A. (2023). An evaluation of elemental enrichment in rocks: In the case of Kısacık and its neighborhood (Ayvacık, Çanakkale/Türkiye). Journal of Geography and Cartography, 6(1), 1850. https://doi.org/10.24294/jgc.v6i1.1850
Wang, C., Zhang, L., Lan, C., & Dai, Y. (2014). Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: Implications for their origin and tectonic setting. Precambrian Research, 255, 603–626. https://doi.org/10.1016/j.precamres.2014.08.002
Xing, Y., Brugger, J., Etschmann, B., Tomkins, A. G., Frierdich, A. J., & Fang, X. (2021). Trace element catalyses mineral replacement reactions and facilitates ore formation. Nature Communications, 12(1), 1388. https://doi.org/10.1038/s41467-021-21684-5
Yang, X., Zhang, Z., Guo, S., Chen, J., & Wang, D. (2016). Geochronological and geochemical studies of the metasedimentary rocks and diabase from the Jingtieshan deposit, North Qilian, NW China: Constraints on the associated banded iron formations. Ore Geology Reviews, 73, 42–58. https://doi.org/10.1016/j.oregeorev.2015.10.018
Yin, J., Li, H., & Xiao, K. (2023). Origin of Banded Iron Formations: Links with Paleoclimate, Paleoenvironment, and Major Geological Processes. Minerals, 13(4), 547. https://doi.org/10.3390/min13040547
Zhang, Z., Hou, T., Santosh, M., Li, H., Li, J., Zhang, Z., Song, X., & Wang, M. (2014). Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57, 247–263. https://doi.org/10.1016/j.oregeorev.2013.08.021.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal and Author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.