Bridging Mathematical Foundations and Intelligent Systems: A Statistical and Machine Learning Approach
Keywords:
Mathematical Modeling, Statistical Inference, Machine Learning, Predictive Analytics, Intelligent SystemsAbstract
This study presents a comprehensive exploration of the transition from traditional mathematical modeling to intelligent systems empowered by statistics and machine learning. It begins with the mathematical underpinnings essential to model construction, including linear algebra, optimization, and differential equations, and connects these foundations to practical algorithms such as linear regression, support vector machines, principal component analysis, and reinforcement learning. Emphasis is placed on statistical reasoning through Bayesian inference, hypothesis testing, and model validation using cross-validation techniques. Real-world applications in healthcare, finance, and engineering demonstrate the utility and adaptability of these models, where methods like logistic regression achieve AUC scores above 0.85 in patient risk prediction and LSTM networks outperform traditional models in financial time-series forecasting. The work also discusses the emerging integration of symbolic mathematics with deep learning and probabilistic programming as the next frontier of intelligent system design. Findings highlight that combining structure from mathematics, inference from statistics, and adaptivity from machine learning results in robust, interpretable, and high-performing models for data-driven decision-making.
Downloads
Published
Issue
Section
Similar Articles
- Musa Ndamadu Farouq, Nwaze Obini Nweze, Monday Osagie Adenomon, Mary Unekwu Adehi, Derivation of a New Odd Exponential-Weibull Distribution , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Ismail Kolawole Adekunle, Ibrahim Sule, Sani Ibrahim Doguwa, Abubakar Yahaya, On the Properties and Applications of Topp-Leone Kumaraswamy Inverse Exponential Distribution , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Chukwuemeka. K. Onwuamaeze, Christopher. I. Ejiofor, An Improved Defragmentation Model for Distributed Customer’s Bank Transactions , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- Humphrey Sam Samuel, Emmanuel Edet Etim, John Paul Shinggu, Bulus. Bako , Machine learning of Rotational spectra analysis in interstellar medium , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Usman Mohammed, Doguwa Sani Ibrahim, Mohammed Aminu Sulaiman, Reuben Oluwabukunmi David, Sadiq Ibrahim Abubakar, Development of Topp-Leone Odd Fréchet Family of Distribution with Properties and Applications , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Franklin Akwasi Adjei, Artificial Intelligence and Machine Learning in Environmental Health Science: A Review of Emerging Applications , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 Issue 5
- Dulo Chukwemeka Wegner, A Review on the Advances in Underwater Inspection of Subsea Infrastructure: Tools, Technologies, and Applications , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 Issue 5
- Kingsley Uchendu, Emmanuel Wilfred Okereke, Exponentiated Power Ailamujia Distribution: Properties and Applications to Time Series , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 Issue 5
- Florence Omada Ocheme, Hakeem Adewale Sulaimon, Adamu Abubakar Isah, A Deep Neural Network Approach for Cancer Types Classification Using Gene Selection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Michael Oladipo Akinsanya, Aminath Bolaji Bello, Oluwafemi Clement Adeusi, A Comprehensive Review of Edge Computing Approaches for Secure and Efficient Data Processing in IoT Networks , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.