Effectiveness of Machine Learning Models in Intrusion Detection Systems: A Systematic Review
Keywords:
Machine learning, deep learning, intrusion detection systems, effectiveness, intrusion detectionAbstract
While there are several benefits of machine learning (ML) algorithm for intrusion detection, it has been established that there are other issues like time span and classification of data. Thus, this study conducted a systematic review on the effectiveness of machine learning models in intrusion detection systems. Using the meta-synthesis research design, the study adopts a systematic literature review approach. Different databases (Web of Science, Scopus, Google Scholar, IEEE Xplore, and CINAHL) were consulted and the search techniques required the use of Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA). Data were extracted from the nineteen final selected studies, using the data extraction table. Results showed that the commonly used ML models include Random Forest (RF), Support Vector Machine (SVM), Decision Trees (DT), Naïve Bayes (NB), K-Nearest Neighbors (KNN), Logistic Regression (LR), Gradient Boosting, and AdaBoost. Findings showed that the performance metrics used to measure the effectiveness of ML-enhanced intrusion detection systems include accuracy, precision, recall, F1-score, error margin, false positive rate (FPR), false negative rate (FNR), and area under the ROC curve (AUC). It was demonstrated that ML algorithms perform well in detecting various cyber intrusions. The datasets used for training machine learning models include KDD Cup 99, NSL-KDD, UNSW-NB15, Kyoto, CICIDS2017, and Wireless Sensor Network Dataset (WSN-DS). The challenges associated with the application of ML algorithms for intrusion detection systems include data imbalance, high dimensionality, and feature selection complexities. The study concludes that machine learning models have the capacity to detect various cyber intrusions.
Downloads
Published
Issue
Section
Similar Articles
- Joy Nnenna Okolo, A Review of Machine and Deep Learning Approaches for Enhancing Cybersecurity and Privacy in the Internet of Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Dahunsi Samuel Adeyemi , Autonomous Response Systems in Cybersecurity: A Systematic Review of AI-Driven Automation Tools , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Fatima Binta Adamu, Muhammad Bashir Abdullahi, Sulaimon Adebayo Bashir, Abiodun Musa Aibinu, Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Humphrey Sam Samuel, Emmanuel Edet Etim, John Paul Shinggu, Bulus. Bako , Machine learning of Rotational spectra analysis in interstellar medium , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Yisa Adeniyi Abolade, Bridging Mathematical Foundations and Intelligent Systems: A Statistical and Machine Learning Approach , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Samuel Omefe, Simbiat Atinuke Lawal, Sakiru Folarin Bello, Adeseun Kafayat Balogun, Itunu Taiwo, Kevin Nnaemeka Ifiora, AI-Augmented Decision Support System for Sustainable Transportation and Supply Chain Management: A Review , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- David Adetunji Ademilua, Edoise Areghan, AI-Driven Cloud Security Frameworks: Techniques, Challenges, and Lessons from Case Studies , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Precious Ogechi Ufomba, Ogochukwu Susan Ndibe, IoT and Network Security: Researching Network Intrusion and Security Challenges in Smart Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Forward Nsama, Strategic Development of AI-Driven Supply Chain Resilience Frameworks for Critical U.S. Sectors , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
You may also start an advanced similarity search for this article.