Resource recovery from Sugar Cane Biomass for the Synthesis of Silicon Nanoparticles

Authors

  • Irene Edem Johncross National Open University of Nigeria, Jabi, Abuja, Nigeria
  • Fanifosi Seyi Josiah New Mexico State University, USA.
  • Abidemi Obatoyinbo Ajayi College of EngineeringNew Mexico State University, Las Cruces, USA.

Keywords:

Resource recovery, sugar cane wastes, silicon nanoparticles, synthesis, characterization

Abstract

Communication in Physical Sciences, 2024, 12(1): 026-037

Authors: Irene Edem Johncross, Abidemi Obatoyinbo Ajayi and Abidemi Obatoyinbo Ajayi

Received:  19th May 2024/Accepted : 09 November 2024/First Published: 14  November 2024,

DOI: https://dx.doi.org/10.4314/cps.v12i1.4

 

This study presents a green synthesis approach for silicon oxide nanoparticles (SiONPs) using plantain peels, highlighting their structural and surface properties, potential applications, and environmental benefits. UV-Visible absorption spectroscopy revealed a peak absorption at 341 nm, corresponding to a bandgap of 3.87 eV, confirming the semiconductor nature of the synthesized SiONPs. The X-ray diffraction (XRD) analysis displayed a prominent peak at 69.24°, indicative of high crystallinity and minimal amorphous content, with a calculated crystallite size of 0.23 nm based on Scherrer’s equation. Brunauer-Emmett-Teller (BET) surface area analysis showed a surface area of 198.98 m²/g, exceeding literature values and suggesting enhanced adsorption properties. Additional analyses using Barrett-Joyner-Halenda (BJH), Dubinin-Radushkevich (DR), and Density Functional Theory (DFT) models indicated a mesoporous structure with an average pore diameter of 5.5545 nm and a pore volume of 0.0371 cc/g, suitable for applications requiring high surface area-to-volume ratios. Compared to reported values for SiONPs synthesized by traditional methods, the SiONPs obtained from plantain peel demonstrate promising structural integrity and mesoporosity. This research emphasizes the feasibility of using agro-waste for nanoparticle synthesis, offering a sustainable alternative with potential applications in environmental remediation and catalytic processes.

 

Downloads

Download data is not yet available.

Author Biographies

Irene Edem Johncross, National Open University of Nigeria, Jabi, Abuja, Nigeria

Department of Chemistry

Fanifosi Seyi Josiah, New Mexico State University, USA.

Klipsch School of Electrical and Computer Engineering

Abidemi Obatoyinbo Ajayi, College of EngineeringNew Mexico State University, Las Cruces, USA.

Department of Mechanical and Aerospace Engineering

References

Abdul Ghani, N. A. M., Saeed, M. A. & Hashim, I. H. (2017). Thermoluminescence (TL) response of silica nanoparticles subjected to 50 Gy gamma irradiation.Maylaysian Journal of Fundamental and Applied Sciences, 13, 3, :doi:10.11113/mjfas.v13n3.593

Anuar, M.F., Fen, Y.W., Zaid, M.H.M., Matori, K.A., & Khaidir, R. (2018). Synthesis and structural properties of coconut husk as potential silica source. Results in Physics, 11, pp. 1-4. doi: 10.1016/j.rinp.2018.08.018018

Arce, J. V. R., Alburquenque, D., Gautier, J. L., Zuniga, G. A & Herrera, F. (2013). Simple steps for synthesis of silicon oxide mesoporous materials used as template. Journal of Chilean Chemical Society, 584, http://dx.doi.org/10.4067/S0717-97072013000400020

Azib, T., Thaury, C., Cuevas, F., Leroy, E., Jordy, C., Marx, N & Latroche, M. (2021). Impact of surface chemistry of silicon nanoparticles on the structural and electrochemical properties of Si/Ni3.4Sn4 composite anode for li-ion batteries. Nanometerials (Basel), 11, 1, doi: 10.3390/nano11010018

Azlina, H. N., Hasnidawani, J. N., Norita, H. & Surip, S. N. (2016). Synthesis of SiO2 Nanostructures Using Sol-Gel Method. Acta Physica Polonica A, 29(4): 842-844.

Biradar, A. I., Sarcalkar, P. D., Tell, S. R., Pawar, C. A., Patil, P. S. & Prasad, N. R. (2021). Photocatalytic degradation of dyes using one-step synthesized silica nanoparticles. Materials Today Proceedings, 43, S1, : doi:10.1016/j .matpr.2020.11.946.

Cañas, J., Reyes, D. F., Zakhtser, A., Dussarrat, C., Teramoto, T., Gutiérrez, M., & Gheeraert, E. (2022). High-quality SiO2/O-terminated diamond interface: Band-gap, band-offset, and interfacial chemistry. Nanomaterials, 1, 23, pp. , 4125. https://doi.org/10.3390/nano12234125

Chang, H., Kao, M. J., Hsu, F. C. & Peng, D. X. (2014). Synthesis and Characterization of SiO2 Nanoparticles and Their Efficacy in Chemical Mechanical Polishing Steel Substrate. Advances in Materials Science and Engineering, https://doi.org/10.1155/2014/691967.

Corrales-Ureña, Y., Villalobos-Bermudez, C., Pereira, R., Camacho, M., Estrada, E., & Argüello-Miranda, O. (2018). Biogenic silica-based microparticles obtained as a sub-product of the nanocellulose extraction process from pineapple peels. Scientific Reports, 8, pp. 1-9. doi: 10. -1038/s41598-018-28444-4s41598-018-28444-4Coti

Daulay, A., Andriayani., Marpongahtun & Gea, S. (2022). Synthesis Si nanoparticles from rice husk as material active electrode on secondary cell battery with X-Ray diffraction analysis. South African Journal of Chemical Engineering, 42: 32-41, https://doi.org/10.1016/j.sajce.2022.07.004.pp.

Eddy, N. O & Garg, R. (2021). CaO nanoparticles: Synthesis and application in water purification. Chapter 11. In: Handbook of research on green synthesis and applications of nanomaterials. Garg, R., Garg, R. and Eddy, N. O, edited. Published by IGI Global Publisher. DOI: 10.4018/978-1-7998-8936-6

Eddy, N. O., Garg, R., Garg, R., Aikoye, A. & Ita, B. I. (2022a). Waste to resource recovery: mesoporous adsorbent from orange peel for the removal of trypan blue dye from aqueous solution. Biomass Conversion and Biorefinery, DOI: 10.1007/s13399-022-02571-5.

Eddy, N. O., Garg, R., Garg, R., Eze, S. I., Ogoko, E. C., Kelle, H. I., Ukpe, R. A., Ogbodo, R. & Chijoke, F. (2023a). Sol-gel synthesis, computational chemistry, and applications of Cao nanoparticles for the remediation of methyl orange contaminated water. Advances in Nano Research, https://doi.org/10.12989/anr. 2023.15.1.000

Eddy, N. O., Odiongenyi, A. O., Garg, R., Ukpe, R. A., Garg, R., El Nemir, A., Ngwu, C. M. & Okop, I. J. (2023b). Quantum and experimental investigation of the application of Crassostrea gasar (mangrove oyster) shell–based CaO nanoparticles as adsorbent and photocatalyst for the removal of procaine penicillin from aqueous solution. Environmental Science and Pollution Research, doi:10.1007/s11356-023-26868-8.

Eddy, N. O., Ukpe, R. A., Garg, R., Garg, R., Odiongenyi, A. O., Ameh, P., Akpet, I, N., & Udo, E. S. (2023c). Review of in-depth knowledge on the application of oxides nanoparticles and nanocomposites of Al, Si and Ca as photocatalyst and antimicrobial agents in the treatment of contaminants in water. Clean Technologies and Environmental Policy, DOI : 10.1007/s10098-023-02603-2.

Eddy, N. O., Jibrin, J. I., Ukpe, R. A., Odiongenyi, A., Iqbal, A., Kasiemobi, A. M., Oladele, J. O., & Runde, M. (2024b). Experimental and Theoretical Investigations of Photolytic and Photocatalysed Degradations of Crystal Violet Dye (CVD) in Water by oyster shells derived CaO nanoparticles (CaO-NP), Journal of Hazardous Materials Advances, 13, 100413, https://doi.org/10.1016/j.hazadv.2024.100413.

Eddy, N. O., Garg, R., Ukpe, R. A., Ameh, P. O., Gar, R., Musa, R., , Kwanchi, D., Wabaidur, S. M., Afta, S., Ogbodo, R., Aikoye, A. O., & Siddiqu, M. (2024c). Application of periwinkle shell for the synthesis of calcium oxide nanoparticles and in the remediation of Pb2+-contaminated water. Biomass Conversion and Biorefinery, DOI: 10.1007/s13399-024-05285-y.

Eddy, N. O., Oladede, J., Eze, I. S., Garg, R., Garg, R., & Paktin, H. (2024a). Synthesis and characterization of CaO nanoparticles from periwinkle shell for the treatment of tetracycline-contaminated water by adsorption and photocatalyzed degradation. Results in Engineering, 103374. https://doi.org/10.1016/j.rineng.2024.103374.

Eddy, N. O., Garg, R., Garg, R., Garg, R., Ukpe, R. A. & Abugu, H. (2024). Adsorption and photodegradation of organic contaminants by silver nanoparticles: isotherms, kinetics, and computational analysis. Environ Monit Assess, 196, 65, https://doi.org/10.100 7/s10661-023-12194-6.

Edriss, M. and Adinehnia, S. M. (2011). Synthesis of Silica Nanoparticles by Ultrasound-Assisted Sol-Gel Method: Optimized by Taguchi Robust Design. Chemical Engineering Technology, 34(11): 1813-1819, https://doi.org/10.1002/ceat.201100195.

Elizondo-Villarreal, N., Gandara-Martínez, E., García-Méndez, M., Gracia-Pinilla, M., Guzmán-Hernández, A. M., Castaño, V. M., & Gómez-Rodríguez, C. (2024). Synthesis and characterization of SiO₂ nanoparticles for application as nanoadsorbent to clean wastewater. Coatings, 14, 7, 919. https://doi.org/ 10.3390/coatings14070919

Ghorbani, F., Sanati, A. M., & Maleki, M. (2015). Production of silica nanoparticles from rice husk as agricultural waste by an environmentally friendly technique. Environmental Studies of Persian Gulf, 2, 1, pp. 56-65.

Hussin, S. H. A., Al-Hamdani, A. H. and Nazar, A. (2016). Optical and morphological characteristics for silicon dioxide NPS prepared by sol-gel method. International Journal of Scientific and Engineering Research, 7(8): 234-237.

Intartaglia, B., Bagga, K., Scotto, M., Diaspro, A. & Brandi, F. (2012). Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Optical Materials, 2, pp. 510-518

Ismail, A., Saputri, L. N. M. Z., Dwiatmoko, A. A., Susanto, B. H. and Nasikin, M. (2021) A facile approach to synthesis of silica nanoparticles from silica sand and their application as superhydrophobic material, Journal of Asian Ceramic Societies, 9, 2, pp. 665-672. doi: 10.1080/21 -870764.2021.1911057

Khatoon, N., Subedi, B., & Chrisey, D. B. (2024). Synthesis of silicon and germanium oxide nanostructures via photonic curing: A facile approach to scale up fabrication. Chemistry Open, 13, 7, e202300260. https://doi.org/10.1002/open .202300260.

Kim, T., & Lee, J. (2023). Silicon nanoparticles: Fabrication, characterization, application and perspectives. Micro and Nano Systems Letters, 11, 18, . https://doi.org/10.1186 /s40486-023-00184-9.

Mahawar, L., Ramasamy, K. P., Suhel, M., Prasad, S. M., Živčák, M., Brestic, M., Rastogi, A., & Skalický, M. (2023). Silicon nanoparticles: Comprehensive review on biogenic synthesis and applications in agriculture. Environmental Research, 232, 116292. https://doi.org/10.1016/j.envres.2023.116292.

Meng, T., Ying, K., Hong, Y. & Xu, Q. (2020). Effect of different particle sizes of nano-SiO2 on the properties and microstructure of cement paste. Nanotechnology Reviews, https://doi.org/10.1515/ntrev-2020-0066

Ni’mah, Y. L. Muhainah, Z. H. & Suprapto, S. (2023). Synthesis of silica nanoparticles from sugarcane bagasse by sol-gel method. Nanoparticles, 4, 1, https://doi.org/10.35702/nano.10010.

Odoemelam, S. A., Oji, E. O., Eddy, N. O., Garg, R., Garg, R., Islam, S., Khan, M. A., Khan, N. A. & Zahmatkesh, S. (2023). Zinc oxide nanoparticles adsorb emerging pollutants (glyphosate pesticide) from aqueous solution. Environmental Monitoring and Assessment, https://doi.org/10.1007/s10661-023-11255-0

Ogoko, E. C., Kelle, H. I., Akintola, O. & Eddy, N. O. (2023). Experimental and theoretical investigation of Crassostrea gigas (gigas) shells based CaO nanoparticles as a photocatalyst for the degradation of bromocresol green dye (BCGD) in an aqueous solution. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03742-8

Rahimzadeh, C. Y., Barzinjy, A. A., Mohammed, A. S. and Hamad, S. M. (2022) Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles. PLoS ONE 17, 8, e0268184. https://doi.org/ 10.1371/journal.pone.0268184

Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K. & Makino, K. (2005). A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci. 289, 11, pp. 125-31. doi: 10.1016/j.jcis.2005 -.02.019.

Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., El-Sheery, N. I., & Brestic, M. (2019). Application of silicon nanoparticles in agriculture. 3 Biotech, 9, 90. https://doi.org/10.1007/s13205-019-1626-7.

Saha, A., Mishra, P., Biswas, G., & Bhakta, S. (2024). Greening the pathways: A comprehensive review of sustainable synthesis strategies for silica nanoparticles and their diverse applications. RSC Advances, 14, pp. 11197-11216. https://doi.org/10.1039/D4RA01047G.

Saravanan, S. & Dubey, R. S. (2020). Synthesis of SiO2 nanoparticles by sol-gel method and their optical and structural properties. Romanian Journal of Information Science and Technology, 23, 1, pp. 105-112.

Vasilyeva, A. A., Buribaev, R. A., Gorbunova, M. V., Apyari, V. V., Torocheshnikova, I. I., & Dmitrienko, S. G. (2024). Silicon-based nanoparticles: Synthesis and recent applications in chemical sensing. TrAC Trends in Analytical Chemistry, 171, 117538. https://doi.org/10.1016/j.trac .2024.117538.

Weisany, W., Razmi, J., Hosseinzadeh Eshaghabadi, A., & Pashang, D. (2024). Silicon nanoparticles (SiNP): A novel and sustainable strategy for mitigating environmental stresses in plants. Journal of Soil Science and Plant Nutrition, 24, pp. 2167–2191.https://doi.org/10.1007/s427 29-0 24-01790-1.

Zarei, V., Mirzaasadi, M., Davarpanah, A., Nasiri, A., Valizadeh, M. & Hosseini, M. J. S. (2021). Environmental method for synthesizing amorphous silica oxide nanoparticles from a natural material. Processes, 9, 334, https://doi.org/10.3390/ pr9020334.

Yan, G., Huang, Q., Zhao, S., Xu, Y., He, Y., Nikolic, M., Nikolic, N., Liang, Y., & Zhu, Z. (2024). Silicon nanoparticles in sustainable agriculture: Synthesis, absorption, and plant stress alleviation. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1393458

Downloads

Published

2024-11-14