Nickel-doped Zeolite cluster as adsorbent material for the adsorption of biodiesel oxidation products: Approach from computational study

Authors

  • Runde Musa National Open University of Nigeria, Abuja, Nigeria
  • Uzairu Muhammad Sada National Open University of Nigeria, Abuja, Nigeria
  • Favour A. Nelson University of Calabar, Calabar, Nigeria

Keywords:

Biodiesel, oxidation, zeolite, adsorption, DFT

Abstract

Communication in Physical Sciences, 2024, 12(1): 120-140

Authors: Runde Musa, Uzairu Muhammad Sada  and Favour A. Nelson

Received: 18 September 2024/Accepted: 19 November 2024/Published 24 November 2024

DOI:https://dx.doi.org/10.4314/cps.v12i1.10

This study investigates the adsorption behaviour of various biodiesel oxidation products onto the surface of nickel-doped zeolite as an efficient adsorbent zeolite (Ni-clo) through adsorption studies, quantum theory of atoms in molecules (QTAIM) analysis, and sensor performance evaluations using density functional theory. Adsorption studies reveal strong interactions between the surface and the biodiesel products, with ketone compounds exhibiting the most negative adsorption energy, indicating strong attraction to the Ni-clo surface. QTAIM analysis further elucidates the nature of these interactions, showing moderate to strong covalent bond formations and structural stability across all systems. Sensor performance evaluations highlight the electrical conductivity, charge transfer mechanism, back donation, and the fraction of electron transfer, indicating the potential of the sensor device to detect and desorb the targeted adsorbate. The findings suggest that the complexes exhibit relatively high reactivity. Overall, this comprehensive investigation provides insights into the adsorption behaviour and sensor performance of organic compounds on a Ni-clo zeolite surface.

Downloads

Download data is not yet available.

Author Biographies

Runde Musa, National Open University of Nigeria, Abuja, Nigeria

Department of Chemistry

Uzairu Muhammad Sada , National Open University of Nigeria, Abuja, Nigeria

Department of Chemistry

Favour A. Nelson, University of Calabar, Calabar, Nigeria

Department of Pure and Applied Chemistry

References

Adachi, H. (1997). Molecular cluster approach to electronic state and chemical bonding in metallic materials. Materials Transactions, JIM, 38, 6, pp. 485–502.

Aguayo-Villarreal, I. A., Cortes-Arriagada, D., Rojas-Mayorga, C. K., Pineda-Urbina, K., Muñiz-Valencia, R., & Gonzalez, J. (2020). Importance of the interaction adsorbent–adsorbate in the dyes adsorption process and DFT modeling. Journal of Molecular Structure, 1203, , pp. 127398.

Aktary, M., Alghamdi, H. S., Ajeebi, A. M., AlZahrani, A. S., Sanhoob, M. A., Aziz, M. A., & Nasiruzzaman Shaikh, M. (2024). Hydrogenation of CO2 into Value‐added Chemicals Using Solid‐Supported Catalysts. Chemistry–An Asian Journal, e202301007.

Alonso, J. A. (2000). Electronic and atomic structure, and magnetism of transition-metal clusters. Chemical Reviews, 100, 2, pp. 637–678.

Amat, A., Mosconi, E., Ronca, E., Quarti, C., Umari, P., Nazeeruddin, M. K., ... & De Angelis, F. (2014). Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Letters, 14, 6, pp. 3608–3616.

Bag, P., Porzelt, A., Altmann, P. J., & Inoue, S. (2017). A stable neutral compound with an aluminum–aluminum double bond. Journal of the American Chemical Society, 139, 41, pp. 14384–14387.

Bahrani, S., Ghaedi, M., Tariq, R., Zalipour, Z., & Sadeghfar, F. (2021). Fundamental developments in the zeolite process. In Interface Science and Technology, 32, pp. 499–556.

Bakheit, A. H., Abuelizz, H. A., & Al-Salahi, R. (2023). Hirshfeld Surface Analysis and Density Functional Theory Calculations of 2-Benzyloxy-1, 2, 4-triazolo [1, 5-a] quinazolin-5 (4 H)-one: A Comprehensive Study on Crystal Structure, Intermolecular Interactions, and Electronic Properties. Crystals, 13, 10, doi.org/10.3390/cryst13101410

Barbara, P. F., Meyer, T. J., & Ratner, M. A. (1996). Contemporary issues in electron transfer research. The Journal of Physical Chemistry, 100, 31, pp. 13148–13168.

Belousov, A. S., Esipovich, A. L., Kanakov, E. A., & Otopkova, K. V. (2021). Recent advances in sustainable production and catalytic transformations of fatty acid methyl esters. Sustainable Energy & Fuels, 5, 18, pp. 4512–4545.

Belousov, A. S., Esipovich, A. L., Kanakov, E. A., & Otopkova, K. V. (2021). Recent advances in sustainable production and catalytic transformations of fatty acid methyl esters. Sustainable Energy & Fuels, 5, 18, pp. 4512–4545.

Bhattacharjee, S., Waghmare, U. V., & Lee, S. C. (2016). An improved d-band model of the catalytic activity of magnetic transition metal surfaces. Scientific Reports, 6, 1, pp. 35916.

Blanck, S., Loehlé, S., Steinmann, S. N., & Michel, C. (2020). Adhesion of lubricant on aluminium through adsorption of additive head-groups on γ-alumina: A DFT study. Tribology International, 145, pp. 106140. DOI:10.1016/j.triboint. 2019.106140

Blanck, S., Loehlé, S., Steinmann, S. N., & Michel, C. (2020). Adhesion of lubricant on aluminium through adsorption of additive head-groups on γ-alumina: A DFT study. Tribology International, 145, DOI:10.1016/j.triboint.2019.106140.

Cazorla, C. (2015). The role of density functional theory methods in the prediction of nanostructured gas-adsorbent materials. Coordination Chemistry Reviews, 300, , pp. 142–163.

Chattaraj, P. K., & Roy, D. R. (2007). Update 1 of: Electrophilicity index. Chemical Reviews, 107, 9, pp. PR46–PR74.

Chaudhary, R. G., Potbhare, A. K., Aziz, S. T., Ayyub, M. M., Kahate, A., Madankar, R. S., ... & Mahmoud, S. H. (2024). Bioinspired Graphene-based Metal Oxide Nanocomposites for Photocatalytic and Electrochemical Performances: An Updated Review. Nanoscale Advances.DOI:10.1039/D3NA01071F

Chen, L. H., Sun, M. H., Wang, Z., Yang, W., Xie, Z., & Su, B. L. (2020). Hierarchically structured zeolites: from design to application. Chemical Reviews, 120, 20, pp. 11194–11294.

Cherkasov, A. R., Galkin, V. I., Zueva, E. M., & Rafael'A, C. (1998). The concept of electronegativity. The current state of the problem. Russian Chemical Reviews, 67, 5, pp. 375–392.

Claver, C., Yeamin, M. B., Reguero, M., & Masdeu-Bultó, A. M. (2020). Recent advances in the use of catalysts based on natural products for the conversion of CO2 into cyclic carbonates. Green Chemistry, 22, 22, pp. 7665–7706.

Das, A., & Rokhum, S. L. (2024). Renewable diesel and biodiesel: A comparative analysis. In Renewable Diesel (pp. 123–166). Elsevier.

Das, P., & Gundimeda, H. (2022). Is biofuel expansion in developing countries reasonable? A review of empirical evidence of food and land use impacts. Journal of Cleaner Production, 372, 133501. https://doi.org/10.1016/j.jclepro. -2022.133501.

Dearnaley, G., Morgan, D. V., & Stoneham, A. M. (1970). A model for filament growth and switching in amorphous oxide films. Journal of Non-Crystalline Solids, 4, pp. 593–612.

Dehmani, Y., Mohammed, B. B., Oukhrib, R., Dehbi, A., Lamhasni, T., Brahmi, Y., ... & Abouarnadasse, S. (2023). Adsorption of various

inorganic and organic pollutants by natural and synthetic zeolites: A critical review. Arabian Journal of Chemistry, 105474. doi.org/10.1016/j.arabjc.2023.105474.

Di, L., Zhang, J., Zhang, X., Wang, H., Li, H., Li, Y., & Bu, D. (2021). Cold plasma treatment of catalytic materials: A review. Journal of Physics D: Applied Physics, 54(33), DOI: 10.1088/1361-6463/ac0269

Du, J., Su, L., Zhang, D., Jia, C., & Yuan, Y. (2022). Experimental investigation into the pore structure and oxidation activity of biodiesel soot. Fuel, 310, pp. 122316. DOI: 10.1016/j.fuel.2021.122316.

Eddy, N. O. and Ita, B. I. (2011). Experimental and theoretical studies on the inhibition potentials of some derivatives of cyclopenta-1,3-diene. International Journal of Quantum Chemistry 111(14): 3456-3473. DOI:10.1002/qua

Eremia, M., & Shahidehpour, M. (Eds.). (2013). Handbook of electrical power system dynamics: Modeling, stability, and control. John Wiley & Sons.

Etabti, H., Fitri, A., Benjelloun, A. T., Benzakour, M., & Mcharfi, M. (2022). Efficient tuning of benzocarbazole based small donor molecules with D-π-A-π-D configuration for high-efficiency solar cells via π-bridge manipulation: A DFT/TD-DFT study. Computational and Theoretical Chemistry, 1208, , pp. 113580.

Fayemi, O. E., & Ebenso, E. E. (2022). Functionalized carbon allotropes as corrosion inhibitors. In Functionalized nanomaterials for corrosion mitigation: Synthesis, characterization, and applications (pp. 87–114). American Chemical Society.

Fuggle, J. C., Hillebrecht, F. U., Zeller, R., Zołnierek, Z., Bennett, P. A., & Freiburg, C. (1983). Electronic structure of Ni and Pd alloys. I. X-ray photoelectron spectroscopy of the valence bands. Physical Review B, 27, 4, doi.org/10.1103/PhysRevB.27.2179

Fujimori, A., & Minami, F. (1984). Valence-band photoemission and optical absorption in nickel compounds. America Physical Society, 30(2), doi:10.1103/PhysRevB.30.957.

Gagner, J. E., Qian, X., Lopez, M. M., Dordick, J. S., & Siegel, R. W. (2012). Effect of gold nanoparticle structure on the conformation and function of adsorbed proteins. Biomaterials, 33, 33, pp. 8503–8516.

Galperin, F. M., & Gavrilov, N. A. (1970). The Electronic Structure of 3d Transition Metals. Physica Status Solidi (b), 40(1), pp. 53–58.

Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G.

A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratcshian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. GaussView, Version 6.1, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.

Khnifiraa, M., El Hamidia, S., Machrouhia, A., Mahsounea, A., Boumyaa, W., Tounsadia, H., ... & Abdennouria, M. (2020). Theoretical and experimental study of the adsorption characteristics of Methylene Blue on titanium dioxide surface using DFT and Monte Carlo dynamic simulation. Homo, 2(2).

Chemcraft - graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com.

Gber, T. E., Louis, H., Ngana, O. C., Amodu, I. O., Ekereke, E. E., Benjamin, I., ... & Adeyinka, A. (2023). Yttrium-and zirconium-decorated Mg₁₂O₁₂–X (X= Y, Zr) nanoclusters as sensors for diazomethane (CH₂N₂) gas. RSC Advances, 13, 36, pp. 25391–25407.

Gonzalez-Diaz, H., Arrasate, S., Gomez-SanJuan, A., Sotomayor, N., Lete, E., Besada-Porto, L., & M Ruso, J. (2013). General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry. Current Topics in Medicinal Chemistry, 13, 14, pp. 1713–1741.

Gundekari, S., Mitra, J., & Varkolu, M. (2020). Classification, characterization, and properties of edible and non-edible biomass feedstocks. In Advanced Functional Solid Catalysts for Biomass Valorization (pp. 89–120). Elsevier.

Hrabie, J. A., & Keefer, L. K. (2002). Chemistry of the nitric oxide-releasing diazeniumdiolate (“nitrosohydroxylamine”) functional group and its oxygen-substituted derivatives. Chemical Reviews, 102, 4, pp. 1135–1154.

Humphrey, W., Dalke, A., & Schulten, K. (1996). "VMD - Visual Molecular Dynamics," J. Molec. Graphics, 14, pp. 33–38.

Jafarihaghighi, F., Ardjmand, M., Salar Hassani, M., Mirzajanzadeh, M., & Bahrami, H. (2020). Effect of fatty acid profiles and molecular structures of nine new sources of biodiesel on combustion and emission. ACS Omega, 5, 26, pp. 16053–16063.

Konur, O. (2021). Biodiesel and petrodiesel fuels: Science, technology, health, and the environment. In Biodiesel Fuels (pp. 3–36). CRC Press.

Králik, M. (2014). Adsorption, chemisorption, and catalysis. Chemical Papers, 68, 12, pp. 1625–1638.

Lafarga, T. (2021). Production and consumption of oils and oilseeds. In Oil and Oilseed Processing: Opportunities and Challenges (pp. 1–21).

Lee, C. C., Tran, M. V., Tan, B. T., Scribano, G., & Chong, C. T. (2021). A comprehensive review on the effects of additives on fundamental combustion characteristics and pollutant formation of biodiesel and ethanol. Fuel, 288, pp. 119749.

MacFarlane, L., Zhao, C., Cai, J., Qiu, H., & Manners, I. (2021). Emerging applications for living crystallization-driven self-assembly. Chemical Science, 12, 13, pp. 4661–4682.

Maitra, N. T. (2017). Charge transfer in time-dependent density functional theory. Journal of Physics: Condensed Matter, 29, 42, DOI 10.1088/1361-648X/aa836e

Mallette, A. J., Shilpa, K., & Rimer, J. D. (2024). The Current Understanding of Mechanistic Pathways in Zeolite Crystallization. Chemical Reviews. Chem. Rev. 124, pp. 3416-3493 DOI: 10.1021/acs.chemrev.3c00801.

Malode, S. J., Gaddi, S. A. M., Kamble, P. J., Nalwad, A. A., Muddapur, U. M., & Shetti, N. P. (2022). Recent evolutionary trends in the production of biofuels. Materials Science for Energy Technologies, 5, pp. 262–277.

Mamontova, E., Trabbia, C., Favier, I., Serrano-Maldonado, A., Ledeuil, J. B., Madec, L., ... & Pla, D. (2023). Novel Catalyst Composites of Ni-and Co-Based Nanoparticles Supported on Inorganic Oxides for Fatty Acid Hydrogenations. Nanomaterials, 13, 9, pp. 1435.

Marian, C. M. (2001). Spin-orbit coupling in molecules. Reviews in Computational Chemistry, 17, pp. 99–204.

May, V., & Kühn, O. (2023). Charge and energy transfer dynamics in molecular systems. John Wiley & Sons. Montemore, M. M., Van Spronsen, M. A., Madix, R. J., & Friend, C. M. (2017). O₂ activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts. Chemical Reviews, 118, 5, pp. 2816–2862.

Mulliken, R. S. (1932). The interpretation of band spectra part III. Electron quantum numbers and states of molecules and their atoms. Reviews of Modern Physics, 4, 1, pp. 1.

Nakanishi, W., Hayashi, S., & Narahara, K. (2008). Atoms-in-molecules dual parameter analysis of weak to strong interactions: behaviors of electronic energy densities versus Laplacian of electron densities at bond critical points. The Journal of Physical Chemistry A, 112, 51, pp. 13593–13599.

Nielsen, C. F. (2020). Discovery and characterization of formate dehydrogenases for enzymatic conversion of CO2.

Pakiari, A. H., & Eskandari, K. (2006). The chemical nature of very strong hydrogen bonds in some categories of compounds. Journal of Molecular Structure: THEOCHEM, 759, 1–3, pp. 51–60.

Pal, P., Ting, J. M., Agarwal, S., Ichikawa, T., & Jain, A. (2021). The catalytic role of D-block elements and their compounds for improving sorption kinetics of hydride materials: a review. Reactions, 2, 3, pp. 333–364.

Poater, J., Duran, M., Sola, M., & Silvi, B. (2005). Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chemical Reviews, 105, 10, pp. 3911–3947.

Prabakaran, S., Rupesh, K. J., Keeriti, I. S., Sudalai, S., Venkatamani, G. P., & Arumugam, A. (2023). A scientometric analysis and recent advances of emerging chitosan-based biomaterials as potential catalyst for biodiesel production: A review. Carbohydrate Polymers, 121567.doi.org/10.1016/j.carbpol.2023.121567

Qu, Z., Sun, F., Liu, X., Gao, J., Qie, Z., & Zhao, G. (2018). The effect of nitrogen-containing functional groups on SO₂ adsorption on carbon surface: Enhanced physical adsorption interactions. Surface Science, 677, , pp. 78–82.

Raimi, M. A., Rajee, A. O., Gber, T. E., Arikpo, T. O., Pembere, A., & Louis, H. (2024). Cobalt group transition metals (TM: Co, Rh, Ir) coordination of S-doped porphyrins (TM_S@ PPR) as sensors for molecular SO₂ gas adsorption: a DFT and QTAIM study. Journal of Molecular Modeling, 30, 3, pp. 1–18.

Rajee, A. O., Amodu, I. O., Abdlateef, M. K., Ogbogu, M. N., Ibrahim, R. H., Adesope, K. T., ... & Louis, H. (2024). Chemically effect of small molecules (X= CF₃, COOH, NH₂, NO₂) functionalized covalent organic framework (X-COF) as sensors for glyphosate: A computational study. Chemical Physics Impact, , , pp. 100510.

Ravanchi, M. T., & Sahebdelfar, S. (2021). Catalytic conversions of CO2 to help mitigate climate change: Recent process developments. Process Safety and Environmental Protection, 145, pp. 172–194.

Ren, X., Han, Y., Xu, Y., Liu, T., Cui, M., Xia, L., Li H., Gu Y., Wang, P. (2021). Diversified strategies based on nanoscale metal-organic frameworks for cancer therapy: The leap from monofunctional to versatile. Coordination Chemistry Reviews, 431, pp. 213676. doi.org/10.1016/j.ccr.2020.213676

Sachdeva, G., Vaya, D., Rawat, V., & Rawat, P. (2022). Solid-supported Catalyst in Heterogeneous Catalysis. In Heterogeneous Catalysis in Organic Transformations (pp. 105–125). CRC Press.

Saral, A., Manikandan, A., Javed, S., & Muthu, S. (2024). Vibrational spectra, molecular level solvent interaction, stabilization, donor-acceptor energies, thermodynamic, non-covalent interaction and electronic behaviors of 6-Methoxyisoquinoline-anti tubercular agent. Chemical Physics Impact, 8, , pp. 100392.

Sarfaraz, S., Yar, M., & Ayub, K. (2024). The electronic properties, stability and catalytic activity of metallofullerene (M@C60) for robust hydrogen evolution reaction: DFT insights. International Journal of Hydrogen Energy, 51, pp. 206–221.

Shomal, R., Du, W., & Al-Zuhair, S. (2022). Immobilization of Lipase on Metal-Organic frameworks for biodiesel production. Journal of Environmental Chemical Engineering, 10, 2, doi.org/10.1016/j.jece.2022.107265

Singh, D., Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel,

doi.org/10.2516/ogst/2020088

Tabari, L., & Farmanzadeh, D. (2020). Yttrium doped graphene oxide as a new adsorbent for H₂O, CO, and ethylene molecules: Dispersion-corrected DFT calculations. Applied Surface Science, 500, , pp. 144029.

Tahernia, M. (2020). Papertronic sensing arrays for rapid and high-throughput screening of electroactive microorganisms (Doctoral dissertation). State University of New York at Binghamton.

Tian Lu, Feiwu Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem. 33, pp. 580–592, DOI: 10.1002/jcc.22885.

Toshtay, K. (2024). Liquid-phase hydrogenation of sunflower oil over platinum and nickel catalysts: Effects on activity and stereoselectivity. Results in Engineering, 101970. doi.org/10.1016/j.rineng.2024.101970

Upton, T. H., & Goddard III, W. A. (1978). The electronic states of Ni2 and Ni2+. Journal of the American Chemical Society, 100, 8, pp. 5659–5668.

Vilas Bôas, R. N., & Mendes, M. F. (2022). A review of biodiesel production from non-edible raw materials using the transesterification process with a focus on the influence of feedstock composition and free fatty acids. Journal of the Chilean Chemical Society, 67, 1, pp. 5433–5444.

Vilas Bôas, R. N., & Mendes, M. F. (2022). A review of biodiesel production from non-edible raw materials using the transesterification process with a focus on the influence of feedstock composition and free fatty acids. Journal of the Chilean Chemical Society, 67, 1, pp. 5433–5444.

Vogiatzis, K. D., Polynski, M. V., Kirkland, J. K., Townsend, J., Hashemi, A., Liu, C., & Pidko, E. A. (2018). Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chemical Reviews, 119, 4, pp. 2453–2523.

Wang, A., Du, M., Ni, J., Liu, D., Pan, Y., Liang, X., ... & Wang, W. (2023). Enhanced and synergistic catalytic activation by photoexcitation-driven S− scheme heterojunction hydrogel interface electric field. Nature Communications, 14, 1, pp. 6733. https://doi.org/10.1038/ 341467-023-42542-6.

Wei, J., & Wang, Y. (2021). Effects of biodiesels on the physicochemical properties and oxidative reactivity of diesel particulates: A review. Science of The Total Environment, 788, 147753. https://doi.org/10.1016/j.scitotenv.2021.147753.

Wickham, L. M., & Giri, R. (2021). Transition metal (Ni, Cu, Pd)-catalyzed alkene dicarbofunctionalization reactions. Accounts of Chemical Research, 54, 17, pp. 3415–3437.

Xia, S. (2021). Production, application, and future development of biodiesel. Thesis submitted to Centria University of Applied Science, Finland. https://urn.fi/URN:NBN:fi:amk-2021092217967

Xin, H., Vojvodic, A., Voss, J., Nørskov, J. K., & Abild-Pedersen, F. (2014). Effects of d-band shape on the surface reactivity of transition-metal alloys. Physical Review B, 89, 11, DOI: 10.1103/PhysRevB.89.115114

Yoon, J., Yang, H. S., Lee, B. S., & Yu, W. R. (2018). Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. Advanced Materials, 30, 42, pp. 1704765.

Zhan, C. G., Nichols, J. A., & Dixon, D. A. (2003). Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. The Journal of Physical Chemistry A, 107, 20, pp. 4184–4195.

Zhang, J. X., Sheong, F. K., & Lin, Z. (2020). Principal interacting orbital: A chemically intuitive method for deciphering bonding interaction. Wiley Interdisciplinary Reviews: Computational Molecular Science, 10, 6, pp. e1469.

Zhang, L., Li, Z., Yang, J., Zhou, J., Zhang, Y., Zhang, H., & Li, Y. (2022). A fully integrated flexible tunable chemical sensor based on gold-modified indium selenide nanosheets. ACS Sensors, 7, 4, pp. 1183–1193.

Zhang, P., Liu, P., Fan, M., Jiang, P., & Haryono, A. (2021). High-performance magnetite nanoparticles catalyst for biodiesel production: Immobilization of 12-tungstophosphoric acid on SBA-15 works effectively. Renewable Energy, 175, pp. 244–252.

Zhang, Q., Gao, S., & Yu, J. (2022). Metal sites in zeolites: synthesis, characterization, and catalysis. Chemical Reviews, 123, 9, pp. 6039–6106.

Quadri, T. W., Olasunkanmi, L. O., Elendu, C. C., Wang, Z., Aleem, R. D., Cao, C., Duan, P. G., Ramzan, N., & Hazzan, O. O. (2024). Environmental impact and performance evaluation of calabash seed oil biodiesel. Biomass and Bioenergy, 183, 107152. https://doi.org/10.1016/j.biombioe.2023.107152

Downloads

Published

2024-11-24