Strategic Development of AI-Driven Supply Chain Resilience Frameworks for Critical U.S. Sectors
Keywords:
Artificial Intelligence, Supply Chain Resilience, Critical Infrastructure, Predictive Analytics, Disruption ManagementAbstract
The COVID-19 pandemic, in the midst of stimulated geopolitical and cyber threats, has exposed significant weaknesses in the United States' supply chains, especially when several essential sectors (such as healthcare, energy, food, and semiconductor manufacturing) are considered. Customized supply chain risk management systems is based on non dynamic assumptions, non-automated analysis, and outdated or previous-looking data. Consequently, the listed approaches have proven inadequate to compensate for complex disruptions and high-velocity. Therefore, the present study establishes and examines an AI-Driven Supply Chain Resilience Framework (AI-SCRF) designed to create anticipatory capabilities, adaptability, and autonomous decision-making in the face of large-scale shocks. The developed AI-SCRF was directed to predictive analytics, digital twins, machine learning and real-time optimization mechanisms that facilitated situational awareness and accelerate recovery. To evaluate its effectiveness, the AI-SCRF was deployed in simulated pandemic-driven shortages of PPE, a cyberattack on the national power grid, and a global transportation shutdown. Its performance was gauged on four important metrics - response time, service level, cost impact reduction, and inventory recovery time - and compared to that of traditional supply chain approaches. Paired sample t-tests quantitative analysis revealed statistically significant improvement across all measures (p < 0.01). The AI solution reduced mean response time by 45 hours (t = 12.16, p = 0.0073), increased service levels by 32.7 percentage points (t = –24.49, p = 0.0017), improved cost impact reduction by 35% (t = –42.04, p = 0.0006), and reduced inventory recovery time by 6.67 days (t = 11.71, p = 0.0077). All improvements were accompanied by very large effect sizes (Cohen's d > 6.7), and 95% confidence intervals confirmed the robustness of the improvements. The findings demonstrate the transformative potential of AI-enabled systems in constructing supply chain resilience. The AI-SCRF not only addresses the real-time visibility and agility gaps of traditional systems but also provides an extensible framework suitable for emerging threats such as AI-enabled cyberattacks and climate-driven disruptions. The research findings have national policy implications, augmenting strategic initiatives such as Executive Order 14017 and the CHIPS and Science Act, and providing a blueprint for the design, governance, and deployment of smart supply networks for critical infrastructure sectors
Most read articles by the same author(s)
- Forward Nsama, Development of Sustainable Finance Strategies for Climate-Resilient Infrastructure Investments Across U.S. States , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
Similar Articles
- Onuchi Marygem Mac-Kalunta, Chinedu Ifeanyi Nwankwo, Anslem Kenechukwu Nwokedi, Uzoefuna Chima Casmir, Acute Toxicity and Hypolipidemic Study of Extracts of Brillantaisia Owariensis and Andrographis Paniculata Leaf , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Okoro Gladys Ihuoma, Nnochiri Ifeoma U., Design and Implementation of an IoT Microcontroller Power Protection and Control System , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Mu’awiya Baba Aminu, Hareyani Zabidi, Juliet Ngozi Chijioke-Churuba, Saleh Mamman Abdullahi, Kolapo Fasina, Aliyu Abubakar, Muhammad Nurudeen Mashin, Abdulmalik Nana Fatima, Bertha Onyenachi Akagbue, Olusola Kolawole Ogunmilua, Environmental and Public Health Challenges of Phases Towards Cement Production, Remediation Monitoring and Evaluation Strategies , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Bertha Onyenachi Akagbue, Mark Ndako Ibrahim, Oseigbovo Favour Ofure, Oluwaiye Unity Ekugbe, Onah Kyrian, Chibuzor Titus Amaobichukwu, Mu’awiya Baba Aminu, Pam Dajack Dung, Suleiman Isa Babale, Sadiq Mohammed Salisu, Comprehensive Assessment and Remediation Strategies for Air Pollution: Current Trends and Future Prospects; A Case Study in Bompai Industrial Area, Kano State, Nigeria. , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Uzoma Nwokoma Esomchi, Performance of Generated Models with Statistical Tools for Estimation of Solar Radiation in Umudike, Abia State, Nigeria , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Nsikan Ime Obot, Busola Olugbon, Ibifubara Humprey, Ridwanulahi Abidemi Akeem, Equatorial All-Sky Downward Longwave Radiation Modelling , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- Isaac Chukwutem Abiodun, Monday Edward Edem, Obasesam Ebri Agbor, Investigation of the Structural and electronic properties of Ternary AB₂X₄ based material via Density Functional Theory (DFT) for Optoelectronic Applications , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Taye Temitope Alawode, Molecular Docking Studies on Eudesmane Sesquiterpenes as Potential Anti-leishmanial Agents , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Emmanuel Michael Umoh, Edidiong Sunday Sam, The Recycling of Sawdust Waste into Particleboard Using Starch-Based Modified Adhesive , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- Monica Chikodinaka Nkwocha, Lebe A. Nnanna, Chukwuemeka Young Ahamefula, Ogwo D. Kalu, Properties of Avocado (Persea Americana) Leaf Extract as a Corrosion Inhibitor for Mild Steel in 1 M KOH , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
You may also start an advanced similarity search for this article.



