Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images
DOI:
https://doi.org/10.4314/rhpegf88Keywords:
Artificial Intelligence, Image Processing, Cervical Cancer, Visual Inspection , Acetic Acid, Cervical Intraepithelial NeoplasiaAbstract
Automated image-based cervical cancer detection plays a vital role in diagnosing cervical cancer, particularly through the use of digital cervical images obtained via visual inspection with acetic acid (VIA). Many algorithms have been developed to classify these images by extracting mathematical features. Artificial intelligence (AI) has significantly advanced healthcare by improving disease detection, diagnosis, and prediction of health outcomes. While various cervical cancer screening methods have evolved, VIA remains one of the most feasible options in low-resource settings. However, its effectiveness relies heavily on the examiner’s experience, which can be limited due to a shortage of qualified healthcare professionals. This study evaluates the performance of AI image processing techniques for detecting cervical cancer using VIA images. The research compares four traditional machine learning techniques and six deep learning techniques in classifying cervical cancer images, where each model was trained on four randomly selected batches of images (300, 700, 1000, and 1678 images) to assess model performance with an increasing number of training images. The VGG19 model achieved a consistent accuracy of 81% across all training sizes. The Vision Transformer (ViT) model, on the other hand, showed a performance improvement from 57% accuracy with 300 images to 77% accuracy with 1678 images. The hybrid model, combining VGG19 and ViT, demonstrated superior performance with an accuracy of 86.65%, an AUC of 0.85, a sensitivity of 0.832, and a specificity of 0.8485. This study demonstrates that the hybrid model outperforms individual models, offering a promising solution for cervical cancer detection in low-resource environments.
Downloads
Published
Issue
Section
Similar Articles
- Rashida Adamu Bulkachuwa, Bello Y. Idi, Musa Muhammad Salihu, Abdullahi Lawal, Salisu Tata, Evaluation of Excessive Lifetime Cancer Risk Due to Gamma Radiation on Rocks in Shira Village, Bauchi State Nigeria , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Fidelis .I. Ugwuowo, Mixed Variable Logistic Regression Model for Assessing Diagnostic Markers in Prostate Cancer , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
- Onyeije Ugomma Chibuzo, Augustine Odiba Aikoye, Chemical Information from GCMS Analysis of Acetone-Ethanol Ex-tract of Piper guineense Leaf. Part 2 , Communication In Physical Sciences: Vol. 5 No. 4 (2020): VOLUME 5 ISSUE 4
- Ifeanyi E. Otuokere, K. K. Igwe, Ni(II) complex of (3,3-dimethyl-7-oxo-6-(2-Phenylacetamido)-4-thia1-Azabicyclo[3.2.0]heptane-2-carboxylic acid : Synthesis, characterization and antibacterial activities , Communication In Physical Sciences: Vol. 5 No. 1 (2020): VOLUME 5 ISSUE 1
- Usman Ibrahim, Musa Muhammad, Yakubu Azeh, Muhammad Umar Badeggi , Isolation and Synthesis of Cellulose Nanofibers From Cassava Inner Peel Using Phosphoric Acid , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Pius Onyeoziri Ukoha, Uchechukwu Ruth Obeta , Reduction of the Adipato-Bridged Binuclear Iron(III) Complex, [(Fesalen)2adi] by Thioglycolic Acid: Kinetic and Mechanistic Study , Communication In Physical Sciences: Vol. 3 No. 1 (2018): VOLUME 3 ISSUE 1
- I. Usman, Modification of White Method for Quantitative Evaluation of 5hydroxymethylfurfural in Honey , Communication In Physical Sciences: Vol. 5 No. 1 (2020): VOLUME 5 ISSUE 1
- Ibrahim Isyaku, Isaac A. Bello, I. G. Ndukwe, I. G. Kizito, Isolation and Characterization of Nonanoic Acid from Ethyl Acetate Extract of Adenodolichos paniculatus (hua) Hutch. & Dalz (Fabaceae) , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- G. U. Kaior, N. J. Nwodo, U. S. Oruma, A. Ibezim, A. E. Ochonogor, K. K. Onyia, Nnamdi L. Obasi, Structural, Antimicrobial and in Silico Studies of Some Schiff Bases of Trans-paramethoxycinnamaldehyde Derivatives , Communication In Physical Sciences: Vol. 5 No. 4 (2020): VOLUME 5 ISSUE 4
- A.D. Onu, Reduction of Trioxobromate(V)Ion By [Cohedtaoh21- in Acid Medium : Kinetics and Mechanism , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
You may also start an advanced similarity search for this article.