Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images
DOI:
https://doi.org/10.4314/rhpegf88Keywords:
Artificial Intelligence, Image Processing, Cervical Cancer, Visual Inspection , Acetic Acid, Cervical Intraepithelial NeoplasiaAbstract
Automated image-based cervical cancer detection plays a vital role in diagnosing cervical cancer, particularly through the use of digital cervical images obtained via visual inspection with acetic acid (VIA). Many algorithms have been developed to classify these images by extracting mathematical features. Artificial intelligence (AI) has significantly advanced healthcare by improving disease detection, diagnosis, and prediction of health outcomes. While various cervical cancer screening methods have evolved, VIA remains one of the most feasible options in low-resource settings. However, its effectiveness relies heavily on the examiner’s experience, which can be limited due to a shortage of qualified healthcare professionals. This study evaluates the performance of AI image processing techniques for detecting cervical cancer using VIA images. The research compares four traditional machine learning techniques and six deep learning techniques in classifying cervical cancer images, where each model was trained on four randomly selected batches of images (300, 700, 1000, and 1678 images) to assess model performance with an increasing number of training images. The VGG19 model achieved a consistent accuracy of 81% across all training sizes. The Vision Transformer (ViT) model, on the other hand, showed a performance improvement from 57% accuracy with 300 images to 77% accuracy with 1678 images. The hybrid model, combining VGG19 and ViT, demonstrated superior performance with an accuracy of 86.65%, an AUC of 0.85, a sensitivity of 0.832, and a specificity of 0.8485. This study demonstrates that the hybrid model outperforms individual models, offering a promising solution for cervical cancer detection in low-resource environments.
Downloads
Published
Issue
Section
Similar Articles
- Chigbundu C. Emmanuel, Adebowale O. Kayode, Equilibrium and Kinetics Studies of the Adsorption of Basic Dyes onto PVOH Facilely Intercalated Kaolinite - A Comparative Study of Adsorption Efficiency , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- A. Yahaya, G. Ayeni, A. U. Ochala, R.A. Larayetan, A. D. Onoja, T. C. Omale, J. A. Akor, Evaluation of mineral in the indigenous and industrially produced soya milk in the Anyigba, Kogi State , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- Taye Temitope Alawode, Molecular Docking Studies on Eudesmane Sesquiterpenes as Potential Anti-leishmanial Agents , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Forward Nsama, Strategic Development of AI-Driven Supply Chain Resilience Frameworks for Critical U.S. Sectors , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 Issue 5
- Iroegbu, Chibuisi, Enefiok Etuk, Charles Efe Osodeke, Electromagnetic Field(Emf) Exposure in 5g Utilizations , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 Issue 5
- Oluwatosin Lawal, Projecting AI-Driven Intersection of FinTech, Financial Compliance, and Technology Law , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Elizabeth Chinyere Nwakorongwu, Patricia Uchechi. Kanayochi-Okpechi, Ugochukwu Joseph, Effects of Annealing Temperature on the Dual Solution Synthesis and Optical Characterization of AlS: ZnS Thin Films , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- David Adetunji Ademilua, Cloud Security in the Era of Big Data and IoT: A Review of Emerging Risks and Protective Technologies , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Humphrey Sam Samuel , Emmanuel Edet Etim, John Paul Shinggu, Bulus Bako, Machine Learning in Thermochemistry: Unleashing Predictive Modelling for Enhanced Understanding of Chemical Systems , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- Ufuoma Shalom Onoabedje, Christopher Obodike Ezugwu, Efeturi Abraham Onoabedje, Antimicrobial Properties of 9, 12-Octadecadienoic Acid Isolated from Leaf Extracts of Acalypha Fimbriata (Euphorbiaceae) , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
You may also start an advanced similarity search for this article.