First Principles Investigation of the Influence of Varied Cr Atom on Band Structure and Magnetic Moment of Rutile SnO2

Authors

  • F. Ayedun National Open University of Nigeria, Abuja, FCT, Nigeria
  • Etido P. Inyang National Open University of Nigeria, Abuja, FCT, Nigeria
  • E.A. Ibanga National Open University of Nigeria, Abuja, FCT, Nigeria

Keywords:

Rutile, First-principles, Generalized Gradient Approximation (GGA), Magnetic moment, magnetic dipole moment

Abstract

Authors: Funmilayo  Ayedun, Etido P. Inyang  and Efiong A. Ibanga

Received 18 November 2020/Accepted 24 December 2020

The electronic and magnetic properties of SnO2 doped with various compositions of chromium atoms are reported. Studies on magnetic property of CrxSn1-xO2 compounds features possible room temperature ferromagnetism which increased nonlinearly as Sn atom is replaced with Cr atom, at x = 0.25( 1.9976 ), x =  0.50 ( 3.9309 ), x = 0.75( 5.8831 ) and x = 1.00 (7.821 ). The magnetic moment and bandgap energy of undiluted SnO2 were compared at x = 0. The addition of Cr atom into SnO2 enhanced the shift from pure binary nonmetallic system to ternary metallic compound. The direct energy gaps decrease from x = 0 to 0.5, and increase from x = 0.75 to 1.00

Downloads

Download data is not yet available.

Author Biographies

F. Ayedun, National Open University of Nigeria, Abuja, FCT, Nigeria

Department of Pure and Applied Science

Etido P. Inyang, National Open University of Nigeria, Abuja, FCT, Nigeria

Department of Pure and Applied Science

E.A. Ibanga, National Open University of Nigeria, Abuja, FCT, Nigeria

Department of Pure and Applied Science

References

Abdulsattar, M. A, Batros, S. S. & Addie, A. J. (2016). Indium doped SnO2 nanostructures preparation and properties supported by DFT study. Superlattices and Microstructures 100, 342-349. https://doi.org/10.1016/j.spmi.2016.09.042

Allegre, V., Maineult, A., Lehmann, F., Lopes, F. & Zamora, M. (2014). Self-potential response to drainage–imbibition cycles. Geophysical Journal International, 197,3, pp. 1410-424. https://doi.org/ 10.1093 /gji/- ggu055.

Ayedun, F., Adebambo, P. O., Adetunji, B. I.., Ozebo, V. C., Oguntuase, J. A. & Adebayo, G. A. (2017). Increased Malleability in tetragonal ZrxTi1-xO2 Ternary Alloys: First-Principles Approach. De Gruyter. Z. Naturforsch. 2017; aophttps://doi.org/10.1515/zna-2017-0036.

Beltran, A., Andres, J., Sambrano, J. R. & Longo, E. (2008). Density Functional theory on the structural and electronic properties of low index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Journal of Physical Chemistry A., 112, pp. 8943-8952

Brener, N. E., Tyler, J. M., Callaway, J., Bagayoko, D. & Zhao, G. L.(2000). Physical Review B. 61, 24 DOI:https://doi.org/10- .1103/PhysRevB.61.16582.

Borges, P.D., Scolfaro, L.M., Leite Alves, H. W., Silva Jr, F. F. & Assali, L. V. C. (2011). Electronic and magnetic properties of SnO2/CrO2 thin superlattices. Nanoscale Research Letters, 6, 146, https://doi.org/10. -1186/1556-276X-6-146

Deligoz, E., Colakoglu, K. & Cifti, Y. O. (2007). The structural, elastic and electronic properties of the pyrite- type phase of SnO2. Journal of Physics and Chemistry of Solids, 69, 4, pp. 859-864.

Fukumura, T., Toyosaki, H, & Yamada, Y. (2005).Magnetic oxide semiconductors. Semiconductor Science and Technology, 20, 4, pp. S103- S111.

Jeng, H. &Guo, G. Y. (2002). First-principle investigations of the orbital magnetic moments in CrO2. Journal of Applied Physics, 92, 2, pp. 951-957, https://doi.org/10.1063/1.1486260

Gianozzi, P., Baroni, S., Bonini, N, Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S. Fratesi, G., Gebauer, R., Gerstmann, U., Gougouussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, I., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasaquarello, A., Paulatto,L. Sbraccia, C., Scandolo, S., Sclauzero, G., Seisonen, A. P. Smogunov, A.,

Umari, P. & Wentzcovitch, R. M. (2009). Journal of Physics: Condensed Matter. 395502 https://iopscience.iop.org/ journal/0953-8984

Gul, R. Victor, M. G. & Soon, C. H. (2012). Vacancy- induced magnetism in SnO2. A density functional study. Physical Review B 78, 184404-184408. DOI: https://doi.org/10.1103/ PhysRevB.78. 184404

Monkhorst, H. J. & Park, D. (1976). Special points for Brillouin-zone integrations. Physical Review B13,5188-5192. http://dx.doi.org/10.1103/PhysRevB.13.5188

Ogale, S. (2010). Dilute doping, defects and ferromagnetism in metal oxide systems. Advanced Materials, 22(29) 312.

Okeke, C. E., Okeke, P.N., Ofoegbu, C. O. & Ubachukwu, A. A. , Unaogu, L. A. (2000) Electromagnetism and /modern Physics for Life Sciences. ISBN: 9782461423

Stashans, A., Puchaicela, P. & Rivera, R(2014). DFT study of Chromim-doped SnO2 materials. Journal of Material Science, 49, pp. 2904-2911. ISSN 0022-2461, DOI 10.1007/s10853-013-7999-9.

Schlottmann, P. (2003). Double exchange mechanism for CrO2. Physical Review B 67, 174419. DOI:https://doi.org/10.1103/Phys Rev B .67.174419

Vidhu, V. K. & Philip, D. (2015). Photosynthesis and applications of bioactive SnO2 nanoparticles. Materials Characterization, 101,pp. 97-105. https://doi.org/10.1016/j. matchar.2014.12.027

Yasuhiko, T. Yoji, I.& Toshiya, K. (2011). Spin- polarized electronic band structures of the Fe4N- Co4N system. Journal of Magnetism and Magnetic Material, 323, 23, pp. 2941-2944.

Wang, C., Ge, M. & Jiang, J. Z. (2010). Magnetic behavior of SnO2 nanosheets at room temperature. Applied Physics Letters 97, pp. 042510 – 042513.

Downloads

Published

2020-12-30