AI-Augmented Decision Support System for Sustainable Transportation and Supply Chain Management: A Review
Keywords:
Artificial Intelligence, Decision Support Systems, Sustainable Transportation, Supply Chain Management, Smart Logistics, Predictive Analytics, Machine Learning, Green Supply Chain, AI Ethics, Intelligent Systems.Abstract
This study is based on a critical review of the use of Artificial Intelligence (AI) in the context of Decision Support System (DSS) in enhancing sustainability in transportation and supply chain management. It sheds some light on the inefficiencies of the traditional DSS to process the demands of dynamic and data-intensive environments as well as the transformational capabilities of AI technologies such as machine learning, deep learning, natural language processing, and reinforcement learning to the need of decision-making processes. DSS that are AI-enhanced can make predictions and prescriptions, real-time flexibility, and enhanced performance, translating to efficient routing, enhanced demand modeling, fuel efficiency, and lower environmental harm. The paper examines the practical applications in the area of logistics and transportation giving examples of successful applications by major international organizations. It also mentions some of the most crucial issues, which are data privacy, transparency of algorithms, integration with legacy systems, and ethics. The study concludes that AI-enhanced DSS can contribute considerably to moving towards sustainable, adaptive, resilient transport and supply chains implementable in a favourable regulatory and organizational environment. The future involvement should be on how we can mitigate these hindrances and lay guidelines on how we can ethically and sustainably use AI.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Simbiat Atinuke Lawal, Samuel Omefe, Adeseun Kafayat Balogun, Comfort Michael, Sakiru Folarin Bello, Itunu Taiwo Owen, Kevin Nnaemeka Ifiora, Circular Supply Chains in the Al Era with Renewable Energy Integration and Smart Transport Networks , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
Similar Articles
- Franklin Akwasi Adjei, Artificial Intelligence and Machine Learning in Environmental Health Science: A Review of Emerging Applications , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Robinson Ogochukwu Isichei, The Intersection of Artificial Intelligence, Music, and Religion: An Extensive Review Highlighting Contemporary and Emerging Perspectives , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Olatunde Ayeomoni, Enhancing Data Provenance, Integrity, Security, and Trustworthiness in Distributed and Federated Multi-Cloud Computing Environments , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Humphrey Sam Samuel, Emmanuel Edet Etim, John Paul Shinggu, Bulus. Bako , Machine learning of Rotational spectra analysis in interstellar medium , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Joy Nnenna Okolo, A Review of Machine and Deep Learning Approaches for Enhancing Cybersecurity and Privacy in the Internet of Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Ololade Omosunlade, Curriculum Framework for Entrepreneurial Innovation among Special Needs Students in the Age of Artificial Intelligence , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Uzoma Ifeanyi Oduah, Paul Chinagorom Nwosu, Emmanuel Ayomide Agbojule , Chisom Gabriel Chukwuka , Daniel Oluwole, Ifedayo Okungbowa, Automation of electric power source changeover switches deploying artificial intelligence. , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Joy Nnenna Okolo, A Systematic Analysis of Artificial Intelligence and Data Science Integration for Proactive Cyber Defense: Exploring Methods, Implementation Obstacles, Emerging Innovations, and Future Security Prospects , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Fatima Binta Adamu, Muhammad Bashir Abdullahi, Sulaimon Adebayo Bashir, Abiodun Musa Aibinu, Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Imam Akintomiwa Akinlade, Ahmed Olasunkanmi Tijani, Musili Adeyemi Adebayo, Chiamaka Perpetua Ezenwaka, Toluwalase Damilola Osanyingbemi, Precious Mkpouto Akpan, Evaluating the Impact of Integrated Go-to-Market Systems on U.S. SMB Competitiveness , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.



