A Review on machine learning and Artificial Intelligence in procurement: building resilient supply chains for climate and economic priorities
Keywords:
Artificial intelligence, Machine Learning, risk management, climate change, digital twins.Abstract
With global supply chain facing unprecedented disruption from climate change and economic uncertainty driving a shift in procurement strategies from previously cost-focused decision-making toward sustainability and resilience, this review examines how Artificial Intelligence (AI) and Machine Learning (ML) can provide transformative solutions for building robust and adaptive supply chains that align with both climate and economic priorities. It discusses other key applications like automated sourcing solutions and contract administration, supplier selection model, multi-tier risk assessment with intelligent scoring models, demand forecasting and inventory optimization with predictive analytics. This paper also discusses the work of AI/ML in enhancing traceability and visibility, the application of digital twins and the circular economy to procurement to actively manage disruptions. The results indicate that the application of technology is significant in respect to cost effectiveness as opposed to corporate climate objectives, carbon reduction and environmental and social governance (ESG). Nevertheless, to effectively operationalize AI/ML, the resultant implementation-level challenges, such as human oversight, model explainability, and data quality, must be surmounted.
Downloads
Published
Issue
Section
Similar Articles
- Olatunde Ayeomoni, Enhancing Data Provenance, Integrity, Security, and Trustworthiness in Distributed and Federated Multi-Cloud Computing Environments , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Iroegbu, Chibuisi, Enefiok Etuk, Charles Efe Osodeke, Electromagnetic Field(Emf) Exposure in 5g Utilizations , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Chukwuemeka. K. Onwuamaeze, Christopher. I. Ejiofor, An Improved Defragmentation Model for Distributed Customer’s Bank Transactions , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- Faith Osaretin Osabuohien, Review of the Environmental Impact of Polymer Degradation , Communication In Physical Sciences: Vol. 2 No. 1 (2017): VOLUME 2 ISSUE 1
- Onaara Enitan Obamuwagun, A Comprehensive Review on Mental Health, Psychological Well-being, and Performance Challenges of Elite Athletes in Competitive Sports , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Oluwatosin Lawal, Projecting AI-Driven Intersection of FinTech, Financial Compliance, and Technology Law , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Idongesit Ignatius udo, A Comprehensive Review on Polymer Degradation: Mechanisms, Environmental Implications, and Sustainable Mitigation Strategies , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Dahunsi Samuel Adeyemi, Effectiveness of Machine Learning Models in Intrusion Detection Systems: A Systematic Review , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Joy Nnenna Okolo, A Review of Machine and Deep Learning Approaches for Enhancing Cybersecurity and Privacy in the Internet of Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.



