AI-Driven Wealth Advisory: Machine Learning Models for Personalized Investment Portfolios and Risk Optimization
Keywords:
ML, Portfolio Optimization, Risk Management, Robo-Advisory, Deep Reinforcement Learning, Financial TechnologyAbstract
This study develops and evaluates an integrated machine learning framework for personalized wealth advisory services that optimizes portfolio allocation while incorporating individual risk profiles, financial goals, and behavioral preferences. We employ a hybrid architecture combining deep reinforcement learning with ensemble methods Random Forest, XGBoost, and LSTM networks to analyze historical market data spanning 2008 to 2022, investor characteristics from a sample of 15,000 individuals, and comprehensive macroeconomic indicators. The framework integrates Modern Portfolio Theory with behavioral finance principles and implements dynamic risk assessment through conditional value-at-risk optimization. The proposed AI-driven system demonstrates superior performance metrics: a 23.4% improvement in risk-adjusted returns (Sharpe ratio: 1.84 versus 1.49 for traditional advisory approaches), 31% reduction in portfolio volatility, and 89.3 % accuracy in risk tolerance classification. The personalization engine successfully adapts to changing market conditions with an average rebalancing efficiency of 94.7%. Component analysis reveals that sophisticated risk profiling, return prediction via LSTM-Attention networks, and reinforcement learning optimization each contribute meaningfully to final performance. Stress testing during major market crises demonstrates superior downside protection, with maximum drawdowns averaging 4.5 percentage points lower than traditional benchmarks. This research contributes a novel multi-agent learning architecture that bridges the gap between algorithmic portfolio optimization and human-centric financial advisory, providing empirical evidence for AI’s role in democratizing sophisticated wealth management services while maintaining interpretability and regulatory compliance through SHAP-based explainability mechanisms.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Abdulateef Oluwakayode Disu, Henry Makinde, Olajide Alex Ajide, Aniedi Ojo, Martin Mbonu, Artificial Intelligence in Investment Banking: Automating Deal Structuring, Market Intelligence, and Client’s Insights Through Machine Learning , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
Similar Articles
- David Adetunji Ademilua, Edoise Areghan, AI-Driven Cloud Security Frameworks: Techniques, Challenges, and Lessons from Case Studies , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Aramide Ajayi, Anuoluwapo Rogers, Emmanuel Egyam, Justin Nnam, Chidinma Jonah, Leveraging Machine Learning for Predictive Analytics in Mergers and Acquisitions: Valuation, Risk Assessment, and Post-Merger Performance , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Forward Nsama, Strategic Development of AI-Driven Supply Chain Resilience Frameworks for Critical U.S. Sectors , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Ayomide Ayomikun Ajiboye, Investigating the Role of Machine Learning Algorithms in Customer Segmentation , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Oluwatosin Lawal, Projecting AI-Driven Intersection of FinTech, Financial Compliance, and Technology Law , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Fatima Binta Adamu, Muhammad Bashir Abdullahi, Sulaimon Adebayo Bashir, Abiodun Musa Aibinu, Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Edoise Areghan, From Data Breaches to Deepfakes: A Comprehensive Review of Evolving Cyber Threats and Online Risk Management , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Kevin Ndubuisi Njoku, Maximizing an Investment Portfolio for a DC Pension with a Return Clause and Proportional Administrative Charges under Weilbull Force Function , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Ase M. Esabai, Edikan E. Akpanibah, Sylvanus K. Samaila, On Investment Model for a CARA Pension Scheme Member with Return of Contributions Clause for Mortgage Housing Scheme , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Temitope Deborah Babayemi, Nafisat Olabisi Raji, Osita Victor Egwuatu, Oludoyi Mayowa Olumide, Integrating Artificial Intelligence with Assistive Technology to Expand Educational Access through Speech to Text, Eye Tracking and Augmented Reality , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
You may also start an advanced similarity search for this article.



