Leveraging Machine Learning for Predictive Analytics in Mergers and Acquisitions: Valuation, Risk Assessment, and Post-Merger Performance
Keywords:
Machine Learning, Mergers and Acquisitions, XGBoost, SHAP Values, Predictive Analytics, Deal ValuationAbstract
This study investigates machine learning (ML) applications to enhance predictive accuracy across three critical M&A dimensions: valuation, risk assessment, and post-merger performance. Using 8,347 U.S. transactions from 2005–2022, we compare Random Forest, XGBoost, Neural Networks, and Support Vector Machines against traditional regression methods. XGBoost achieves 62% higher R2 than OLS for premium prediction (0.676 vs. 0.415), 87.2% accuracy for deal completion (vs. 73.1% for logistic regression), and substantially outperforms analyst estimates for post-merger returns. SHAP value analysis reveals that deal structure features relative size, payment method, tender offers dominate traditional financial metrics. Trading strategies based on ML predictions generate 11.8% annual returns with Sharpe ratio 0.825, demonstrating economic significance. Our findings show that ML captures non-linear relationships invisible to traditional models, providing actionable insights for practitioners while advancing computational corporate finance theory.
Downloads
Published
Issue
Section
Similar Articles
- Ayomide Ayomikun Ajiboye, Muslihat Adejoke Gaffari, Onaara Enitan Obamuwagun, Predictive Analytics in Sport Management: Applying Machine Learning Models for Talent Identification and Team Performance Forecasting , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Imam Akintomiwa Akinlade, Musili Adeyemi Adebayo, Ahmed Olasunkanmi Tijani, Chiamaka Perpetua Ezenwaka, Obafemi Ibrahim Sikiru, Emmanuel Ayomide Oseni, The Role of Machine Learning Models in Optimizing High-Volume Customer Engagement and CRM Transformation , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Ayomide Ayomikun Ajiboye, Investigating the Role of Machine Learning Algorithms in Customer Segmentation , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Raymond Sugar Ebere Amougou, AI-Driven DevOps: Leveraging Machine Learning for Automated Software Delivery Pipelines , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Yisa Adeniyi Abolade, Bridging Mathematical Foundations and Intelligent Systems: A Statistical and Machine Learning Approach , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Adebayo Adegbenro, Arinze Madueke, Aniedi Ojo, Cynthia Alabi, AI-Driven Wealth Advisory: Machine Learning Models for Personalized Investment Portfolios and Risk Optimization , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Christianah Oluwabunmi Ayodele, Esther Oludele Olaniyi, Chukwuebuka Francis Udokporo, Applications of AI in Enhancing Environmental Healthcare Delivery Systems: A Review , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Oyakojo Emmanuel Oladipupo, Abdulahi Opejin, Jerome Nenger, Ololade Sophiat Alaran, Coastal Hazard Risk Assessment in a Changing Climate: A Review of Predictive Models and Emerging Technologies , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
- Samira Sanni, A Review on machine learning and Artificial Intelligence in procurement: building resilient supply chains for climate and economic priorities , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
You may also start an advanced similarity search for this article.



