Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI
DOI:
https://doi.org/10.4314/0hd1n838Keywords:
Spiking Neural Networks. Brain-Inspired AI, Neuromorphic Computing,.Event-Driven Processing. Edge ComputingAbstract
Spiking Neural Networks (SNNs) represent a significant step toward brain-inspired artificial intelligence by mimicking the temporal dynamics and energy efficiency of biological neurons. Unlike traditional artificial neural networks, SNNs process information through discrete spikes, enabling event-driven computation and efficient learning mechanisms. This paradigm shift enhances real-time processing, low-power consumption, and neuromorphic computing applications. With advancements in hardware and training algorithms, SNNs hold great promise for edge computing, robotics, and cognitive modelling. This paper explores the fundamental principles of SNNs, their advantages over conventional deep learning models, and the challenges in developing large-scale, efficient spiking architectures.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Human-AI Collaboration: Enhancing Decision-Making in Critical Sectors , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
Similar Articles
- Olalekan Lawrence Ojo, Famoriyo Olakunle Idris, On The Assessment of fade Depth and Geoclimatic Factor for Microwave Link Applications in Lagos, Nigeria , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Fatima Binta Adamu, Muhammad Bashir Abdullahi, Sulaimon Adebayo Bashir, Abiodun Musa Aibinu, Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Dr Fatai Afolabi, Mr Ismaila Jide Olawale, Professor Sunday 0. 0ladoye, Physicochemical, Phytochemical and Gas Chromatography- Mass Spectrometric Analyses of Gmelina Arborea Root Hexane Extract , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 Issue 6
- Olumide Oni, Memory-Enhanced Conversational AI: A Generative Approach for Context-Aware and Personalized Chatbots , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Emmanuel Michael Umoh, Edidiong Sunday Sam, The Recycling of Sawdust Waste into Particleboard Using Starch-Based Modified Adhesive , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- Oladimeji Enock Oluwole, Umeh Emmanuel Chukwuebuka, Idundun Victory Toritseju, Koffa Durojaiye Jude , Obaje Vivian Onechojo , Petinrin Moses Omolayo , Adeleke Joshua Toyin, The performance analysis of a Wood-Saxon driven Quantum-Mechanical Carnot Engine , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Taye Temitope Alawode, Identification of Potential Aedes aegypti Juvenile Hormone Inhibitors from Methanol Extract of Leaves of Solanum erianthum: An In Silico Approach , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- A. Yahaya, G. Ayeni, A. U. Ochala, R.A. Larayetan, A. D. Onoja, T. C. Omale, J. A. Akor, Evaluation of mineral in the indigenous and industrially produced soya milk in the Anyigba, Kogi State , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- Joseph Amajama, Ahmed Tunde Ibrahim, Julius Ushie Akwagiobe, Atmospheric Humidity Impact on the Strength of Mobile Phone Communication Signal , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Benjamin Odey Omang, Microchemical characterization and stream sediment composition of alluvial gold particles from the Rafin Gora drainage system, Kushaka schist belt, North Western Nigeria , Communication In Physical Sciences: Vol. 9 No. 3 (2023): VOLUME 9 ISSUE 3
You may also start an advanced similarity search for this article.