GCMS and FTIR Spectroscopy Characterization of Luffa Cylindrica Seed Oil and Biodiesel Produced from the oil

Main Article Content

Godwin J. Udo
Usoro M. Etesin
Joachim J. Awaka-Ama
Aniedi E. Nyong
Emaime J. Uwanta

Abstract

Communication in Physical Sciences 2020, 5(3): 378-390


Authors: Godwin J. Udo, Usoro M. Etesin, Joachim J. Awaka-Ama, Aniedi E. Nyong, Emaime J. Uwanta


Received 25 April 2020/Accepted 04 July 2020


The need for replacement of fossil fuel with more efficient fuels that are eco-friendly and renewable (biodiesel) was the basis for the present study. Luffa cylindrica seed oil (LCSO) was extracted through solvent extraction using petroleum ether as a solvent between 60 and 80 C The produced oil was used for the production of biodiesel (LCBD) via two-stage transesterification
. The percentage yield of the extracted oil and biodiesel were 17.3 and 18.8 % respectively. The physico-chemical properties were within ASTM recommended values, indicating a quality fuel production. GC-MS chromatograms of LCSO and LCBD indicated the presence of acridine,9-anilino acid, 11-octadecanoic acid, (methyl ester), methyl stearate and benz (a) anthracene, 6,7,12-trimethyl, 15-octadecanoic acid, methyl ester, methyl stearate, eicosanoic acid, serine methyl ester, and N-[2-oxo-4-phenylbutyryl]. Also, IR spectroscopy analyses of LCSO and LCBD revealed the presence of O-H, C-H, C=O, O-C, =C-H and C-N in LCSO and N-H, O-H, C-H, C=O, C-O, C-N, =C-H stretches in LCBD. The study drew results and findings and concluded that Luffa cylindrica
seed oil is an excellent feed stock for the production of biodiesel. 

Downloads

Download data is not yet available.

Article Details

Section
Articles
Author Biographies

Godwin J. Udo, Akwa Ibom State University, P. M. B,116, Uyo, Akwa Ibom State, Nigeria.

Petroleum and Geochemistry Research Group,
Department of Chemistry,

Usoro M. Etesin, Akwa Ibom State University, P. M. B,116, Uyo, Akwa Ibom State, Nigeria

Petroleum and Geochemistry Research Group,
Department of Chemistry,

Joachim J. Awaka-Ama, Akwa Ibom State University, P. M. B, 116, Uyo, Akwa Ibom State, Nigeria.

Petroleum and Geochemistry Research Group,
Department of Chemistry,

Aniedi E. Nyong, Akwa Ibom State University, P. M. B, 116, Uyo, Akwa Ibom State, Nigeria.

Petroleum and Geochemistry Research Group,
Department of Chemistry,

Emaime J. Uwanta, Akwa Ibom State University, P. M. B, 116, Uyo, Akwa Ibom State, Nigeria.

Petroleum and Geochemistry Research Group,
Department of Chemistry,

References

Adeniyi, O. A. & Isiaka, A. A. (2013). Chemical composition and biodiesel production from snake gourd (Trichosanthes cucumerina) seeds.

International Journal of Science and Research,2,1, pp.41-45.

Adedoyinsola, A., Linus N. O., Bolade, A., & Wan JinJahng, M.Y. (2016). Synthesis and analysis of biodiesel from oils of Luffa cylindrica Seeds, Hyphaene thebaica seeds and palm kernel. Research Journal of Chemical and Environmental Sciences, 4, 4, pp. 29-36.

Adewale, A., Rotimi, A.O., Rao, B. K., Prasad, R. N. & Anjaneyulu, B.(2012). Blighia unijugata and Luffa cylindrica Seed Oils: Renewable

Sources of Energy for Sustainable Development in Rural Africa. Bio Energy Research, 5, 3, pp.713–718.

Abayeh, O. M., Garba, I. H., Adamu, H. M. & Abayeh, O. J. (2013). Quality Characteristics of Luffa aegyptiaca seed oil. International Journal

of Scientific and Engineering Research, 4, 4, pp.11-16

Audu, T. O. K., Aluyor, E. O., Egualeona, S., Momoh, S. S. (2013). Extraction and characterization of Chrysophyllum albidum and Luffacy lindrica seed oils. Petroleum Technology Development Journal, 3, 1,pp.1595-9104.

ASTM D7371-14, Standard Test Method for Determination of Biodiesel (Fatty Acid Methyl Esters) Content in Diesel Fuel Oil Using Mid

Infrared Spectroscopy (FTIR-ATR-PLS Method), ASTM International, West Conshohocken, PA, 2014, www.astm.org ASTM D93: Standard Test Method for Flash Point by Pensky-Martens Closed Cup Tester, West Conhohocken, 2000.

Babalola, R., Omoleye, J. A. & Hymore, F.K, (2014), Development of Industrial Grade Zeolite Y from Nigeria clay. Proceedings of

the 1st Nigeria International conference on Zeolite, 3, pp. 24-28

Bamgboye, A. I. & Oniya, O. O. (2012). Fuel properties of loofah (Luffa cylindrica L.) biofuel blended with diesel. African Journal of

Environmental Science and Technology, 6, 8, pp. 346-352

Canakci, M. & Van G. J. (2001b). Biodiesel production from oils and fats with high free fatty acids. Transactions of the ASAE, 44, 6,

pp.1429–1436

Fernando, T., Felipe de Jesús, H., Juan, C. C. & Rogelio, S. (2018). Kinetics of transesterification processes for biodiesel production. bioofuels: State of Development, DOI:10.5772/intechopen.75927

Gafar, M. K., Itodo, A. U., Warra, A. A., Wyasu1, G. & Usman, J. (2012). Physicochemical, Cold Saponification and GC-MS Analysis of Sponge

Gourd (Luffa cylindrica Linn.) Seed Oil, 3, 2,pp.98-107

Ghadge, S. V. & Raheman, H. (2005). Biodiesel production from mahua oil having high free fatty acids. Biomass and Bioenergy. 28, pp.

-605

Hanny, J. B. & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids.

Bioresources Technology, 99, pp. 1716-1721

Hamed, M. E., Ruihong, Z. & Roberto, AvenaBustillos, J. (2008). A two-step process for biodiesel production from salmon oil.

Biosystems Engineering, Elsevier Ltd, pp. 22– 227.

Itania, P. S., Thais, F. R., Rita, C., Pereira, C., Claudio G. & Isabel, C. P. F. (2011). Determination of biodiesel adulteration with raw vegetable oil from ATR- FTIR data using chemometric tools. Journal of Brazilian Chemical Society, 22, 7, pp.1229-1235.

Ika, A.K., Muhammad, Y., Danu, A., Philippe, E. & Luc, R. (2013). Biodiesel production from jatropha seeds: Solvent extraction and in situ

transesterification in a single step. Fuel, 106, pp. 111-117.

Kumar, V. and Kant, P. (2013). Study of Physical and Chemical Properties of Biodiesel from Sorghum Oil. Research Journal of Chemical

Sciences, 3, 9, pp.64-68.

Okure, U. E., Dagde K. K. & Ukpaka, C. P. (2018) Examination on Characterization of Oil Extracts from Luffa Cylinderica and Hura

Creptian Seeds. Journal of Scientific and Engineering Research, 5, 5, pp.185-192.

Oli, C. C., Onuegbu, T. U. & Ezeudu, E.C. (2014). Proximate composition, characterization and spectroscopic analysis of Luffa aegyptiaca

Seed. International Journal of life Sciences Biotechnology and pharma Research, 3, 4, pp.194-200

Onyegbule, F. A., Okoye, C. I., Chukwuwejim, C. R. & Eze, P. M. (2018). Evaluation of Antioxidant, anti-inflammatory and

antimicrobial activities of the leaf extracts of Luffa cylindrica Journal of Health Sciences, 8, 2, pp. 101-109.

Ramadhas, A. S., Muraleedharan, C. & Jayaraj S. (2005). Performance and emission evaluation of a diesel engine fuelled with methyl esters of rubber seed oil. Renewable Energy. Elsevier Science Limited. Great Britain. 30, pp. 1789–1800.

Sangh, P., Amit, K., Neeraj, K .S. & Jha, K.K. (2012). Luffa cylinderica: An important medicinal plant. Scholars Research Library, 2, pp, 127-134.

Su, T. L., Lin, Y. W., Chou, T. C., Zhang, X., Bacherikov, V. A., Chen, C. H., Liu, L. F. & Tsai, T.J. (2006) Potent antitumor 9- anilinoacridines and acridines bearing an alkylating N-mustard residue on the acridine chromophore: synthesis and biological activity. Journal of Medicinal Chemistry, 49, 12, pp.3710

Usha, K. & Tilak, R. P. (2017). Characteristic and physicochemical properties of some oils. International Journal of Chemical Studies, 4, 4, pp.30-35.

Vicente, G., Coteron, A., Martinez, M. & Aracil, J. (1998). Application of the factorial design of experiments and response surface methodology to optimize biodiesel production industrial Crops and Products, Bioresource Technology, 8, 1, (1), 29–35.

Vicente, G., Martinez, M. & Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems.

Bioresource Technology, 92, 3, pp.297–305.

Qian, J., Wang, F., Liu, S. & Yun, Z. (2008) In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal. Bioresour Technology; 99, 18, pp. 9009–9912.

Rodrigo, A. M., Flávio, A. B. & Matthieu, T. (2015). Correlation Between the Composition and Flash Point of Diesel-Biodiesel Blends. J.

Braz. Chem. Soc., 26, 2, pp. 393-395