Green Synthesis of Titanium Oxide (TiO2) Nanoparticles Using Phyllanthus Niruri and Assessment of Its Antibacterial Activity in Wastewater Treatment


  • Yunusa Habibat Ahmadu Bello University, Zaria- Nigeria
  • Omoniyi K. Isreal Ahmadu Bello University, Zaria- Nigeria.
  • Stephen Abechi Ahmadu Bello University, Zaria- Nigeria.
  • Aroh A. Oyibo Nigerian Police Academy, Wudil, kano State, Nigeria
  • Owolabi A. Awwal Western Illinois University, USA
  • Imam Naziru Federal University Oye-Ekiti


Environmental health, water, microorganism, remediation, TiONPs, photodegradation


Communication in Physical Sciences, 2023, 10(1): 85-99

Authors: unusa Habibat, Omoniyi  K. Isreal, Stephen E. Abechi, Aroh A. Oyibo, Owolabi A. Awwal and Imam Naziru

Received: 11 March 2023/Accepted 30 September 2023

Given the existing and increasing need to reduce the volume of wastewater in the global society due to their potential threat to public health, this study was designed to synthesise titanium oxide nanoparticles (TiONPs) for the remediation of industrial wastewater contaminated by microorganisms.   The TiONPs were synthesized using a green approach, which applied methanol extract Phyllanthus niruri  as a precursor.The synthesized TiONPs were characterized by UV-Vis, FTIR, XRD, SEM, and TEM. The UV-Vis spectroscopy showed maximum absorption peaks at 401 nm and 569 nm resulting from the excitation of titanium oxide NPs. Fourier Transform Infra-Red (FT-IR) revealed the presence of alcohol, phenols and carboxylic acids and therefore showed possible interaction between the nanoparticles and the phytochemicals in the plant extract. the The O-Ti-O bonds vibrational band at 470 cm-1 due to anatase confirmed that the product of the synthesis is TiONPs. the The  nanoparticles and also displayed a spherical shape and a tetragonal geometry with particle sizes ranging from  20-100 nm in diameter (The TiONPs showed a significant antimicrobial activity by decreasing the the colony forming unit (CFU) of Escherichia coli from 3CFU/50 ml to zero CFU/50 ml. The minimum inhibitory concentration (MIC) value of titanium oxide nanoparticles against bacteria was 12.50 µg/ml (Escherichia coli). The presence of the TiONPs correlated shifted the minimum bactericidal concentration (MBC) value  to 25.00 µg/ml (Escherichia coli) The synthesized nanoparticles are therefore documented as an excellent antimicrobial agent against Escherichia coli, which is a known organism responsible for several health challenges through water


Download data is not yet available.

Author Biographies

Yunusa Habibat, Ahmadu Bello University, Zaria- Nigeria

Department of Chemistry

Omoniyi K. Isreal, Ahmadu Bello University, Zaria- Nigeria.

Department of Chemistry

Stephen Abechi, Ahmadu Bello University, Zaria- Nigeria.

Department of Chemistry

Aroh A. Oyibo, Nigerian Police Academy, Wudil, kano State, Nigeria

Department of Chemistry

Owolabi A. Awwal, Western Illinois University, USA

Department of Chemistry, 61455

Imam Naziru, Federal University Oye-Ekiti

Department of Chemistry


Ab Stucchi, M., Elfiad, A., Rigamonti, M., Khan, H. & Boffito, D. C. (2018). Water treatment: Mn-TiO2 synthesized by ultrasound with increased aromatics adsorption. Ultrasonics Sonochemistry, 44, 272-279, 272-279,

Abbas, M. (2020). Experimental investigation of titanium dioxide as an adsorbent for removal of Congo red from aqueous solution, equilibrium and kinetics modelling. Journal of Water Reuse and Desalination, 10, 3, pp. 251–266,

Adullah, S. A., Sahdan, M. Z., Nafarizal, N., Saim, H., Bakri, A. S., Rohaida, C.C., Adriyanto, F., & Sari, Y. (2018). Photoluminescence study of trap-state defect on TiO2 thin films at different substrate temperature via RF magnetron sputtering. Journal of Physics Conference Series. 995: 012067

Al-Hamdani, A. H., Abdalgaffar, A. N., Al-Shaikh, S. H., & Al-Ameer, A. A. (2016). Synthesis of titanium oxide nanoparticle complemented with optical properties. ARPN Journal of Engineering and Applied Sciences, 11, 15, 9335-9340.

Anthony, K.J.P., Murugan M., Jeyaraj M., & Gurunathan, S. (2017). Multiple strategic approaches for green synthesis and application of silver and gold nanoparticles.

APHA. (1989). Standard methods for the examination of water and wastewater (17th ed.p. 1,268). Washington D.C.: American Public Health Association.

Belhassan, K. (2021). Water scarcity management. In Water Safety, Security and Sustainability: threat detection and mitigation(pp. 443-462).

Dette, C., Pérez-Osorio, M. A., Kley, C. S., Punke, P., Patrick, C. E., , Jacobson, P., Giustino, F., F, Jung, S. J., & Kern, K. (2014). TiO2 anatase with a bandgap in the visible region. Nano Lett., 14, 11, pp. :6533-8. doi: 10.1021/nl503131s.

Dobrucka, R. (2017). Synthesis of titanium dioxide nanoparticles using Echinacea purpurea herba. Iranian journal of pharmaceutical research: IJPR, 16(2), 756.

Durai, S. C., Kumar, V. & Murthuraj, D. (2021). Investigations on structural, optical, and impedance spectroscopy studies of titanium dioxide nanoparticles. Bull. Chem. Soc. Ethiop., 15,1, pp. 35, 1, pp. 151-160.

Eddy, N. O., Ukpe, R. A., Ameh, P., Ogbodo, R., Garg, R. & Garg, R. (2023a). Theoretical and experimental studies on photocatalytic removal of methylene blue (MetB) from aqueous solution using oyster shell synthesized CaO nanoparticles (CaONP O). Environmental Science and Pollution Research, 30, 34, pp. 81417-81432.

Eddy, N. O., Ukpe, R. A., Garg, R., Garg, R., Odiongenyi, A. O., Ameh, P., Akpet, I, N. & Udo, E. S. (2023b). Review of in-depth knowledge on the application of oxides nanoparticles and nanocomposites of Al, Si and Ca as photocatalyst and antimicrobial agents in the treatment of contaminants in water. Clean Technologies and Environmental Policy, DOI : 10.1007/s10098-023-02603-2.

Eddy, N. O., Odiongenyi, A. O., Garg, R., Ukpe, R. A., Garg, R., El Nemir, A., Ngwu, C. M. & Okop, I. J. (2023). Quantum and experimental investigation of the application of Crassostrea gasar (mangrove oyster) shell–based CaO nanoparticles as adsorbent and photocatalyst for the removal of procaine penicillin from aqueous solution. Environmental Science and Pollution Research, doi:10.1007/s11356-023-26868-8.

Ganapathi, K. A., Ashok, C. H., Venkateeswara, K. R., Shilpa, C., & Rajendar, V. (2015). Synthesis of TiO2 nanoparticles from orange fruit waste. International Journal of Multidisciplinary Advanced Research Trends, 2 (1): 82-90

Garg, R., Garg, R., Eddy, N. O., Almohana, A. I., Fahad, S., Khan, M. A. & Hong, S. H. (2022). Biosynthesized silica-based zinc oxide nanocomposites for the sequestration of heavy metal ions from aqueous solutions. Journal of King Saud University-Science

Gilbertson, L.M., Zimmerman, J. B., Plata, D.L., Hutchison, J. E., & Anastas, P. T. (2015). Designing nanomaterials to maximize performance and minimize undesirable implications guilded by the principles of green chemistry, Chemical society review 44(16): 5758-5777.

Halder, J., & Islam, M. (2015). Water pollution and its impact on human health. Journal of Environment and Human, 2(1): 36-46.

Han, C., Lalley, J., Namboodiri, D., Cromer, K. & Nadagouda, M. N. (2016). Titanium dioxide-based antibacterial surfaces for water treatment. Current Opinion in Chemical Engineering, 11, pp.

Harmel, R. D., Hathaway, J. M., Wagner, K. L., Wolfe, J. E., Karthikeyan, R., Francesconi, W., & McCarthy, D. T., (2016).Uncertainty in monitoring E. coli concentrations in streams and storm water runoff. Environmental Monitoring and Assessment, 188: 1-11

Kalaiarasi, R., Prasannaraji, G., & Venkatachalam, P (2013), A rapid biological synthesis of silver nanoparticles using leaf broth of Rauvolfia tetraphlla and their promising antibacterial activity, Indo American Journal Pharmaceutical Research 3(10): 8052 - 8062

Khan, S., Naushad, M., Al-Gheethi, A., & Iqbal, J. (2021). Engineered nanoparticles for removal of pollutants from wastewater: Current status and future prospects of nanotechnology for remediation strategies. Journal of Environmental Chemical Engineering, 9(5), 106160.

Maiti, A., Mishra, S. and Chaudhary, M. (2019). Chapter 25 - Nanoscale Materials for Arsenic Removal From Water, Editor(s): Sabu Thomas, Daniel Pasquini, Shao-Yuan Leu, Deepu A. Gopakumar. In Micro and Nano Technologies, Nanoscale Materials in Water Purification, Elsevier, pp. 707-733,

Miller, R. J., Bennett, S., Keller, A. A., Pease, S. & Lenihan, H. S. (2012). TiO2 nanoparticles are phototoxic to marine phytoplankton. PloS one, 7(1), e30321.

Mishra, D., Arora, R., Lahiri, S., Amritphale, S. S., & Chandra, N. (2014). Synthesis and characterization of iron oxide nanoparticles by solvothermal method. Protection of Metals and Physical Chemistry of Surfaces, 50, 628-631.

Moghaddam, A. B., Moniri, M., Azizi, S., Rahim, R. A., Ariff, A. B., Saad, W. Z., & Mohammad, R. (2017). Biosynthesis of TiO2 nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules, 22(6): 872.

Na-Phattalung, S., Harding, D. J., Pattanasattayavong, P., Kim, H., Lee, J., Hwang, D., Chung, T. D. & Yu, J. (2022). Band gap narrowing of TiO2 nanoparticles: A passivated Co-doping approach for enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, 162,, C., Othmani, A., Ghosh, S., Malloum, A., Esfahani, Z. K., & Ahmadi, S. (2021). Dyes adsorption from aqueous media through the nanotechnology: A review. Journal of Materials Research and Technology, 14, 2195-2218.

Patanjali, P., Singh, R., Kumar, A., & Chaudhary, P. (2019). Nanotechnology for water treatment: A green approach. In Green Synthesis, Characterization and Application of Nanoparticles. Elsevier. Pp. 485-512.

Prathnaa, V., Chandrasekarana, N., & Raichurb, A. M (2010). Biomimetic synthesis of silver nanoparticles by citrus limon (lemon) aqueous exyract and theoretical prediction of particle size. Colloids and surface B: Biointerfaces, 82(1): 152-159

Priya, A. K., Pachaiappan, R., Kumar, P. S., Jalil, A. A., Vo, D. V. N., & Rajendran, S. (2021). The war using microbes: a sustainable approach for wastewater management. Environmental Pollution, 275, 116598.

Puri, N. & Gupta, A. (2023). Water remediation using titanium and zinc oxide nanomaterials through disinfection and photocatalysis process: A review. Environmental Research, 227,

River, F., Zuccato, E., Davoli, E., Fattore, E., & Castiglioni, S. (2019). Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy, Journal of Harzardous materials 361,103-110.

Singh, S., Barick, K. C., & Bahadur, D. (2013). Functinal oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomaterials and nanotechnology, 3:3-20.

Sreekala, S. V., Vayalveettil, A., Kochu, J. K., Ramakrishnan, R. T. & Pillai, H. P. S. (2022). Bentonite-titanium dioxide functional nanocomposites suitable for wastewater treatment: an integrated photocatalyst-adsorbent system. New Journal of Chemistry, New J. Chem., 46, pp. 4772-4783.

Wagutu, A. W., Yano, K., Sato, K., Park, E., Iso, Y., & Isobe, T (2019) Musa AAA and Jatropha Curcas L, Sap mediated TiO2 nanoparticles; Synthesis and Characterisation. 1-11.