Investigation of the Safe Location for Private Electric Power Generators Servicing Residential Buildings in Nigeria
Keywords:
Air emission, electric power generators, air quality impact, buildingsAbstract
This study focused on the safe location for electric power generators servicing detached bungalows in the Nigerian environment via the determination of the air quality impact of primary air pollutants including carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SOx ), particulate matter (PM) and volatile organic compounds (VOCs). The AERMOD view air emission dispersion modelling commercial software was used to predict the ground-level concentration of air pollutants entering buildings. These were compared with Nigeria’s National Ambient Air Quality Standards (NAAQs) and WHO air quality standards to determine the indoor air quality impacts and predict the safe location for electric power operations. The results showed that predicted ground-level concentrations of CO, NOx, SOx, PM and VOCs from electric power generators located at both 1 m and 4m from the residential building of interest at the various hours considered were within limits. However, it was observed that the location of generators at 1m or beyond from the house is relatively good and safe to limit hazards from air emissions. The findings will assist relevant authorities and individuals in developing and implementing a strategic air quality management plan for the safety of residential building occupants.
Published
Issue
Section
Similar Articles
- Sunday Emmanson Udoh, Ubong Isaac Nelson, Appraisal of Some Existing Technology on Water Quality: Appraisal and Design , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Nsikan Ime Obot, Busola Olugbon, Ibifubara Humprey, Ridwanulahi Abidemi Akeem, Equatorial All-Sky Downward Longwave Radiation Modelling , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Olusegun Sawole, Kolawole Abiodun Egunjobi, Adebola Daniel Awofodu, Health Risk Assessment of Natural Radionuclides Ingestion from Selected Edible Crops in Farmlands Around Limestone Excavation Area in Ewekoro, Ogun State , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- S. A. Odoemelam, A. M. Udongwo , Heavy Metals Pollution in Surface Water and Sediment of Lower Cross River System in Akwa Ibom State, Nigeria , Communication In Physical Sciences: Vol. 5 No. 2 (2020): VOLUME 5 ISSUE 2
- Wisdom, Ivwurie, Daniel, Okiriguo, Evaluation of n-Alkanes Hydrocarbon from two Communities in Udu Local Government Area, Delta State , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Aniekan Udongwo, https://dx.doi.org/10.4314/cps.v12i2.17 , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- 1. Anthony I. G. Ekedegwa, Evans Ashiegwuike, Enhanced Firefly Algorithm Inspired by Cell Communication Mechanism and Genetic Algorithm for Short-Term Electricity Load Forecasting , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Florence Omada Ocheme, Hakeem Adewale Sulaimon, Adamu Abubakar Isah, A Deep Neural Network Approach for Cancer Types Classification Using Gene Selection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Human-AI Collaboration: Enhancing Decision-Making in Critical Sectors , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
You may also start an advanced similarity search for this article.