Resource recovery from Sugar Cane Biomass for the Synthesis of Silicon Nanoparticles
DOI:
https://doi.org/10.4314/aqh0dn30Keywords:
resource recovery, sugar cane, waste, silicon nanoparticles, synthesis, characterizationAbstract
This study presents a green synthesis approach for silicon oxide nanoparticles (SiONPs) using plantain peels, highlighting their structural and surface
properties, potential applications, and environmental benefits. UV-visible absorption spectroscopy revealed a peak absorption at
341 nm, corresponding to a bandgap of 3.87 eV, confirming the semiconductor nature of the synthesized SiONPs. The X-ray diffraction (XRD) analysis displayed a prominent peak at 69.24°, indicative of high crystallinity and minimal amorphous content, with a calculated crystallite size of 0.23 nm based on Scherrer’s equation. Brunauer-Emmett-Teller (BET) surface area analysis showed a surface area of 198.98 m²/g, exceeding literature values and suggesting enhanced adsorption properties. Additional analyses using Barrett-JoynerHalenda (BJH), Dubinin-Radushkevich (DR), and Density Functional Theory (DFT) models indicated a mesoporous structure with an average pore diameter of 5.5545 nm and a pore volume of 0.0371 cc/g, suitable for applications requiring high surface area-to-volume ratios. Compared to reported values for SiONPs synthesized by traditional methods, the SiONPs obtained from plantain peel demonstrate promising structural integrity and
mesoporosity. This research emphasizes the feasibility of using agro-waste for nanoparticle synthesis, offering a sustainable alternative with potential applications in environmental and catalytic processes.
Downloads
Published
Issue
Section
Similar Articles
- Oyakojo Emmanuel Oladipupo, Abdulahi Opejin, Jerome Nenger, Ololade Sophiat Alaran, Coastal Hazard Risk Assessment in a Changing Climate: A Review of Predictive Models and Emerging Technologies , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
- Yisa Adeniyi Abolade, A Conceptual Framework for Managing Pandemics: Integrating Disease Models with Public Behavior and Misinformation Control , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Dahunsi Samuel Adeyemi, Effectiveness of Machine Learning Models in Intrusion Detection Systems: A Systematic Review , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Vincent Oseikhuemen Binitie, Ogaga Esharive, Solid mineral potential in the southern Benue Trough: A review , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Obonin, Samuel Sabastine, Amadi, Ugwulo Chinyere, Sylvanus, Kupongoh Samaila, The Effects of External Toxicants on Competitive Environment: A Mathematical Modeling Approach , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Gideon Wyasu, B. Myek, Synthesis of an azo dye and its cobalt complex derived from 3-aminophenol , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- Franklin Akwasi Adjei, Artificial Intelligence and Machine Learning in Environmental Health Science: A Review of Emerging Applications , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Ololade Omosunlade, Curriculum Framework for Entrepreneurial Innovation among Special Needs Students in the Age of Artificial Intelligence , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Aaron Enechojo Auduson, Abdullahi Emmanuel Bala, Kizito Ojochenemi Musa,, Mary Melemu Shaibu, Michael Adewale Ibitomi, Ijeoma Milicent Agbo-Okiyi, Baba Aminu Muawiya, Fabian Apeh Akpah, Philomina Okanigbuan, Ifeanyi Obihan, Integrated Geoscientific Techniques for Water Resource Potential: A Case Study of Felele Campus, Federal University Lokoja , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Okoche Kelvin Amadi, Stella Mbanyeaku Ufearoh, Innocent Ajah Okoro, Paulina Adaeze Ibezim, Mitigation of the Corrosion of Mild Steel in Acidic Solutions Using An Aqueous Extract of Calopogonium muconoide (cm) as a green corrosion inhibitor , Communication In Physical Sciences: Vol. 8 No. 3 (2022): VOLUME 8 ISSUE 3
You may also start an advanced similarity search for this article.



