The Efficiency of a Quantum Brayton Engine Using Wood-Saxon Potential
Keywords:
Quantum thermodynamics, Wood-Saxon, Carnot cycle, Quantum heat engines, finite-engineAbstract
Communication in Physical Sciences, 2024, 11(3): 476-484
Authors: Oladimeji Enock Oluwole*; Umeh Emmanuel Chukwuebuka; Idundun Victory Toritseju; Koffa Durojaiye Jude; Obaje Vivian Onechojo; Uzer John Mkohol; Etim Emmanuel Edet.
Received: 10 March 2024/Accepted: 04 June 2024
This paper investigates the efficiency of a Quantum Brayton Engine (QBE) using the Wood-Saxon (WS) potential as the working substance. The WS potential offers a more realistic model compared to the traditional Free-Particle (FP) model for studying quantum systems. The work follows the formalism established by Bender et al. (2000) to describe the QBE cycle with two isentropic and two adiabatic processes. The efficiency expression for the QBE with WS potential is derived. The derived efficiency expression showcases the dependence on the parameters of the WS potential, including depth, confinement width, and diffuseness. By taking the FP limit of the WS model, the efficiency reduces to the well-known expression for a QBE with a free particle, validating the approach. This research demonstrates the potential of the WS potential for analyzing the performance of QBE and paves the way for further exploration of more realistic models in quantum thermodynamics.
Downloads
References
Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., & Lutz, E. (2012). Single-ion heat engine at maximum power. Physical Review Letters, 109, 120, https://doi.org/10.1103/PhysRevLett.109.203006
Abe, S. (2011). Maximum-power quantum-mechanical Carnot engine. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 83, 4, pp. 1–3. https://doi.org/10.1103/PhysRevE.83.041117
Aytekin, O., Turgut, S., Üstoğlu Ünal, V., Akşahin, E., & Tomak, M. (2013). Nonlinear optical properties of a Woods–Saxon quantum dot under an electric field. Physica E: Low-Dimensional Systems and Nanostructures, 54, 2, pp. 257–261. https://doi.org/10.1016/j.physe.2013.06.004
Bender, C. M., Brody, D. C., & Meister, B. K. (2000). Quantum mechanical Carnot engine. Journal of Physics A: Mathematical and General, 33, 24, pp. 4427–4436. https://doi.org/10.1088/0305-4470/33/24/302
Bera, M. L., Julià-Farré, S., Lewenstein, M., & Bera, M. N. (2021). Quantum heat engines with carnot efficiency at maximum power. ArXiv, 1–11. http://arxiv.org/abs/2106.01193
Berkdemir, C., Berkdemir, A., & Sever, R. (2005). Polynomial solutions of the Schrödinger equation for the generalized Woods-Saxon potential. Physical Review C, 72, 2, 027001. https://doi.org/10.1103/PhysRevC.72.027001
Bhattacharjee, S., & Dutta, A. (2021). Quantum thermal machines and batteries. In European Physical Journal B, 94, 12, https://doi.org/10.1140/epjb/s10051-021-00235-3
Brandão, F., Horodecki, M., Ng, N., Oppenheim, J., & Wehner, S. (2015). The second laws of quantum thermodynamics. Proceedings of the National Academy of Sciences, 112, 11, pp. 3275–3279. https://doi.org/10.1073/pnas.1411728112
Campisi, M., Hänggi, P., & Talkner, P. (2011). Erratum: Quantum fluctuation relations: Foundations and applications (Reviews of Modern Physics). In Reviews of Modern Physics, 83, 3, pp. . 771–791). https://doi.org/10.1103/RevModPhys.83.771
Costa, L. S., Prudente, F. V., Acioli, P. H., Neto, J. J. S., & Vianna, J. D. M. (1999). A study of confined quantum systems using the Woods-Saxon potential. Journal of Physics B: Atomic, Molecular and Optical Physics, 32, 10, pp. 2461–2470. https://doi.org/10.1088/0953-4075/32/10/313
Enock, O., Emmanuel, U., & Oghenetega, A. (2021). The efficiency of simple Quantum Engine Stirling and Ericsson cycle. Confluence Journal of Pure and Applied Sciences, 4, 1, pp. 111–119. https://doi.org/10.48550/arXiv.2010.01581
Fei, Z., Chen, J.-F., & Ma, Y.-H. (2022). Efficiency statistics of a quantum Otto cycle. Physical Review A, 105, 2, https://doi.org/10.1103/physreva.105.022609
Guzmán-Vargas, L., Granados, V., & Mota, R. D. (2002). Efficiency of simple quantum engines: The Joule-Brayton and Otto cycles. AIP Conference Proceedings, 643, pp. 291–296. https://doi.org/10.1063/1.1523819
Horchani, R., Al-Shafii, S., Al-Hashimi, N., Ikot, A. N., Okon, I. B., Okorie, U. S., Duque, C. A., & Oladimeji, E. O. E. O. (2022). Bound state solutions and thermal properties of the N-dimensional Schrödinger equation with Varshni plus Woods-Saxon potential via Nikiforov-Uvarov method. Journal of Theoretical and Applied Physics, 16, 4,. https://doi.org/10.30495/jtap.162243
Insinga, A., Andresen, B., & Salamon, P. (2016). Thermodynamical analysis of a quantum heat engine based on harmonic oscillators. Physical Review E, 94, 1, 012119. https://doi.org/10.1103/PhysRevE.94.012119
Jussiau, É., Bresque, L., Auffèves, A., Murch, K. W., & Jordan, A. N. (2023). Many-body quantum vacuum fluctuation engines. Physical Review Research, 5, 3, 033122. https://doi.org/10.1103/PhysRevResearch.5.033122
Lin, B., & Chen, J. (2003). Performance analysis of an irreversible quantum heat engine working with harmonic oscillators. Physical Review E, 67, 4, 046105. https://doi.org/10.1103/PhysRevE.67.046105
Martínez, I. A., Roldán, E., Dinis, L., Petrov, D., Parrondo, J. M. R., & Rica, R. A. (2016). Brownian Carnot engine. Nature Physics, 12, 1, pp. 67–70. https://doi.org/10.1038/nphys3518
Masanes, L., & Oppenheim, J. (2017). A general derivation and quantification of the third law of thermodynamics. Nature Communications, 8, pp. 1–7. https://doi.org/10.1038/ncomms14538
Oladimeji, E. O. (2019). The efficiency of quantum engines using the Pöschl – Teller like oscillator model. Physica E: Low-Dimensional Systems and Nanostructures, 111, pp. 113–117. https://doi.org/10.1016/j.physe.2019.03.002
Oladimeji, E. O., Ibrahim, T. T., Ikot, A. N., Koffa, J. D., Edogbanya, H. O., Umeh, E. C., & Audu, J. (2024). The efficiency of Quantum Mechanical Carnot Engine using the Woods Saxon model. Sule Lamido University Journal of Science & Technology, 9, 1, 2, https://doi.org/10.48550/arXiv.2203.02564 .
Oladimeji, E. O., Idundun, V. T., Umeh, E. C., Ibrahim, T. T., Ikot, A. N., Koffa, J. D., & Audu, J. O. (2024). The Performance Analysis of a Quantum Mechanical Carnot-Like Engine Using Diatomic Molecules. Journal of Low Temperature Physics, 0123456789. https://doi.org/10.1007/s10909-024-03114-0
Oladimeji, E., Owolabi, S., & Adeleke, J. (2021). The Pöschl-Teller like description of Quantum-Mechanical Carnot engine. Chinese Journal of Physics, 70, pp. 151–156. https://doi.org/10.1016/j.cjph.2021.01.004
Peterson, J. P. S., Batalhão, T. B., Herrera, M., Souza, A. M., Sarthour, R. S., Oliveira, I. S., & Serra, R. M. (2019). Experimental Characterization of a Spin Quantum Heat Engine. Physical Review Letters, 123, 24, . https://doi.org/10.1103/PhysRevLett.123.240601
Rezek, Y., & Kosloff, R. (2006). Irreversible performance of a quantum harmonic heat engine. New Journal of Physics, 8, 5, pp. 83–83. https://doi.org/10.1088/1367-2630/8/5/083
Türkpençe, D., Altintas, F., Paternostro, M., & Müstecaplioğlu, Ö. E. (2017). A photonic Carnot engine powered by a spin-star network. EPL (Europhysics Letters), 117, 5, 50002. https://doi.org/10.1209/0295-5075/117/50002
Von Lindenfels, D., Gräb, O., Schmiegelow, C. T., Kaushal, V., Schulz, J., Mitchison, M. T., Goold, J., Schmidt-Kaler, F., & Poschinger, U. G. (2019). Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. Physical Review Letters, 123, 8, https://doi.org/10.1103/PhysRevLett.123.080602
Wang, J., & He, J. (2012). Optimization on a three-level heat engine working with two noninteracting fermions in a one-dimensional box trap. Journal of Applied Physics, 111, 4, https://doi.org/10.1063/1.3681295
Wang, J., He, J., & Xin, Y. (2007). Performance analysis of a spin quantum heat engine cycle with internal friction. Physica Scripta, 7, 2, pp. 227–234. https://doi.org/10.1088/0031-8949/75/2/018
Wang, R., Wang, J., He, J., & Ma, Y. (2012). Performance of a multilevel quantum heat engine of an ideal N -particle Fermi system. Physical Review E, 86, 2, 021133. https://doi.org/10.1103/PhysRevE.86.021133
Woods, R. D., & Saxon, D. S. (1954). Diffuse Surface Optical Model for Nucleon-Nuclei Scattering. Physical Review, 95, 2, pp. 577–578. https://doi.org/10.1103/PhysRev.95.577
Xie, W. (2009a). A study of an exciton in a quantum dot with Woods-Saxon potential. Superlattices and Microstructures, 46, 4, pp. 693–699. https://doi.org/10.1016/j.spmi.2009.06.013
Xie, W. (2009b). A study of two confined electrons using the Woods–Saxon potential. Journal of Physics: Condensed Matter, 21, 11, 115802. https://doi.org/10.1088/0953-8984/21/11/115802
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal and Author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.