Use of Discriminant Analysis in Time Series Model Selection
Keywords:
Time series, model selection, ARMA model, discriminant analysis, simulated dataAbstract
Authors: Agada Joseph Oche and Ugwuowo, Fidelis Ifeanyi
A systematic approach to time series model selection is very important for reduction of the uncertainties associated with highly subjective and inaccurate method currently being used. Information criteria as a measure of goodness of fit have been criticized because of its statistical inefficiency. In this paper, we develop a rule using discriminant analysis for classification of a time series model from a finite list of parsimonious ARMA (p,q) models. A discriminant function is developed for each of the six alternative ARMA(p,q) models using fifty sets of simulated time series data for each model. An algorithm is developed for the evaluation of discriminant scores and model selection. The selection rule is based on the highest discriminant score among the six alternative models. The method was applied to a real life data and thirty sets of simulated data. The real life application resulted in correct model selection while the simulated data gave 93% correct classification.
Downloads
Published
Issue
Section
Similar Articles
- Abidemi Emmanuel Adenij, Chaotic Signature in Power Spectrum and Recurrence Quantification of Dynamical Behaviour of Multivariate Time Series , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Dahunsi Samuel Adeyemi, Effectiveness of Machine Learning Models in Intrusion Detection Systems: A Systematic Review , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Ademilola Olowofela Adeleye, Oluwafemi Clement Adeusi, Aminath Bolaji Bello, Israel Ayooluwa Agbo-Adediran, Intelligent Machine Learning Approaches for Data-Driven Cybersecurity and Advanced Protection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- YUSUF MOHAMMED AUWAL, OSITA CHUKWUDI MELUDU, TIMTERE PASCAL, Computational Modeling and validation of Indoor Radon Gas Dynamics and Accumulation Using Ansys Fluent Simulation , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Onanuga Omotayo Aina, Titus Morrawa Ryaghan, Bello Musa Opeyemi, Momoh Daniel Clement, Goat Horn Biochar as a Low-Cost Adsorbent for the Removal of Cadmium and Zinc ions in Aqueous Solution , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
- Sunday Emmanson Udoh, Analysis of The Impact of Climate Change on Meteorological Time-Series Data in Uyo , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Benjamin Asuquo Effiong, Emmanuel Wilfred Okereke, Chukwuemeka Onwuzuruike Omekara, Chigozie Kelechi Acha, Emmanuel Alphonsus Akpan, A New Family of Smooth Transition Autoregressive (STAR) Models: Properties and Application of its Symmetric Version to Exchange Rates , Communication In Physical Sciences: Vol. 9 No. 3 (2023): VOLUME 9 ISSUE 3
- Franklin Akwasi Adjei, Artificial Intelligence and Machine Learning in Environmental Health Science: A Review of Emerging Applications , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Chisimkwuo John, Okoroafor Promise Izuchukwu, Amobi Chinenye Theresa, Application of Factor Analysis in the Modelling of Inflation Rate in Nigeria , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
You may also start an advanced similarity search for this article.



