Green Synthesis and Characterization of Iron Oxide Nanoparticles using Prosopis Africana Leaf Extract
Keywords:
Green synthesis, iron oxide, nanoparticles, microporous, plant extract, amorphousAbstract
Communication in Physical Sciences, 2023, 9(2):125-136
Authors: Patricia Adamma Ekwumemgbo*, Gideon Adamu Shallangwa, Idongesit Edem Okon and Ibe Awodi
Received: 19 February 2023/Accepted 22 June 2023
Green synthesis of metal oxide nanoparticles has several advantages that include environmental friendliness. Arising on the usefulness of iron oxide nanoparticles (FeNPs) in several research and industrial quarters, we are reporting our current research outputs on the green synthesis of iron oxide nanoparticles (Fe3O4-NPs) from Prosopis Africana leaf extract. The synthesized Fe3O4-NPs were characterized by UV-vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET)/Barrett-Joyner-Halenda (BJH) analysis. The FTIR spectroscopy confirms the presence of phytochemicals in the extract for the reduction of metal ions to nanoparticles. SEM micrograph shows that the synthesized nanoparticles are spherical with sizes ranging from 30 nm – 100 nm. BET/ BJH analysis shows that the synthesized nanoparticles are microporous with a specific surface area (46.6 m2/g), pore volume (0.022 cm3/g) and pore size (1.79 nm). The XRD pattern revealed the amorphous nature of the synthesized nanoparticles and the UV-vis spectrum showed a characteristic peak at 400 nm for Fe3O4 nanoparticles.
Downloads
References
Astruc, D., Lu, F., & Aranzaes, R. J. (2005). Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie (International Edition), 44, pp. 7852-7872. https:doi.org/10.1002/anie.200500766.
Bahadur, A., Saeed, A., Shoaib, M., Iqbal, S., Bashir, M. I., Waqas, M., & Hussain, M. S. (2017). Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: dielectric, magnetic, thermal and optical studies. Materials Chemistry and Physics,198, pp. 229-235.doi: 10.1016/j.matchemphys.2017.05.061
Bayat, M., Zargar, M., Astarkhanova, T., Pakina, E., Ladan, S., Lyashko, M., & Shkurkin, S. I. (2021). Facile Biogenic Synthesis and Characterization of Seven Metal-Based Nanoparticles Conjugated with Phytochemical Bioactives Using Fragaria ananassa Leaf Extract. Molecules, 26, 3025. doi.org/10- .3390/molecules26103025
Bolade, O. P., Williams, A.B., & Benson, N. U. (2020). Green synthesis of iron-based nanomaterials for environmental remediation: a review. Environmental Nanotechnology, Monitoring and Management, 13, 100279. https://doi.org/10.1016/j.enmm.2019.100279.
Chauhan, S., & Uphadhyay L. S. B. (2019). Biosynthesis of iron oxide nanoparticles using plant derivatives of Lawsonia inermis (Henna) and its surface modifcation for biomedical application. Nanotechnology for Environmental Engineering, 4, 8, doi.org/10.1007 -/s41204-019-0055-5
Dash, A., Ahmed, M.T & Selvaraj. R. (2019). Mesoporous magnetite nanoparticles synthesis using the Peltophorum pterocarpum pod extract, their antibacterial efficacy against pathogens and ability to remove a pollutant dye. Journal of Molecular Structure, 1178, pp. 268-273. doi.org/10.1016/j.molstruc. -2018. 10.042
Depali S., Suvardhan, K., & Krishna, B. (2019). Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 12, pp. 3576-3600
Devi, H. S., Boda, M. A., Shah, M.A., Parveen, S., & Wani, A. H. (2019). Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synthesis, 8, pp. 38–45.
Eddy, N. O., Garg, R., Garg, R., Aikoye, A. & Ita, B. I. (2022a). Waste to resource recovery: mesoporous adsorbent from orange peel for the removal of trypan blue dye from aqueous solution. Biomass Conversion and Biorefinery, doi: 10.1007/s13399-022-02571-5.
Eddy, N. O., Odiongenyi, A. O., Garg, R., Ukpe, R. A., Garg, R., El Nemir, A., Ngwu, C. M. & Okop, I. J. (2023b). Quantum and experimental investigation of the application of Crassostrea gasar (mangrove oyster) shell–based CaO nanoparticles as adsorbent and photocatalyst for the removal of procaine penicillin from aqueous solution. Environmental Science and Pollution Research, doi:10.1007/s11356-023-26868-8.
Eddy, N. O., Ukpe, R. A., Ameh, P., Ogbodo, R., Garg, R. & Garg, R. (2022). Theoretical and experimental studies on photocatalytic removal of methylene blue (MetB) from aqueous solution using oyster shell synthesized CaO nanoparticles (CaONP O). Environmental Science and Pollution Research, doi.org/10.1007/s11356-022-22747-w.
Elaigwu, M., Ocheigwu, H. A. O., & Amana, O. (2018). Phytochemical and Antifungal Activity of Leaf Extracts of Prosopis africana and Anacardium occidentale against Macrophomina Root Rot of Sesamum indicum L. in Benue State, Central Nigeria. Journal of Geoscience and Environment Protection, 6, pp. 66-76.
Ebrahiminezhad, A., Zare-Hoseinabadi, A., Berenjian, A., & Ghasemi, Y. (2017). Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Process Synthesis, 6, pp. 469-475. doi 10.1515/gps-2016-0133
Erika, M., Luis, C., Mayra, A., Andre´s, I., Alexis. D., & Oscar, Tinoco. (2018). Green Synthesis of Iron Nanoparticles: Application on the Removal of Petroleum Oil from Contaminated Water and Soils. Journal of Nanotechnology. doi.org/10.1155/2018/4184769
Fatimah, I., Pratiwi, E. Z., & Wicaksono, W. P. (2020). Synthesis of magnetic nanoparticles using Parkia speciosa Hassk pod extract and photocatalytic activity for Bromophenol blue degradation. Egyptian Journal of Aquatic Research, 46, pp. 35-40.
Geneti, S. T., Mekonnen G. A., Murthy, H. C. A., Mohammed, E.T., Ravikumar C. R., Gonfa, B.A. & Sabir, F.K. (2022). Biogenic synthesis of magnetite nanoparticles using leaf extract of thymus schimperi and their application for monocomponent removal of chromium and mercury ions from aqueous solution. Hindawi Journal of Nanomaterials, doi.10.1155/2022/5798 -824
Hassan, A. K., Al-Kindi, G. Y., & Ghanim, D. (2020). Green synthesis of bentonite-supported iron nanoparticles as a heterogeneous Fenton-like catalyst: Kinetics of decolorization of reactive blue 238 dye. Water Science and Engineering, 13, 14, pp. 286-298
Idris, S. A., Abiola, O. C., Mustapha, A. U., Sulaiman, A. & Gidado, I. I. (2022). Green synthesis of silver nanoparticles using stem bark extract of Prosopis africana and their antimicrobial activity. International Journal of Advances in Engineering and Management, 4, 6, pp. 2029-2035. doi: 10.35629/525204062 -0292035
Joergear, R., Klaus, T., & Granqvist, C..G. (2000). Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Advanced Materials, 12, 6, pp. 407–409. https:doi.org/10.1002/(SICI)15214095(200003)12:6%3c407:AIDADMA407%3e3.0.CO;2-O
Jog, R & Burgess, D. J. (2017). Pharmaceutical amorphous nanoparticles. Journal of Pharmaceutical Sciences, 106, 1, pp. 39-65. https://doi.org/10.1016/j.xphs.2016.09.014
Kiwumulo, H. F., Muwonge, H., Ibingira, C., Lubwama, M., Kirabira, J. B., & Ssekitoleko, R. T. (2022). Green synthesis and characterization of iron‑oxide nanoparticles using Moringa oleifera: a potential protocol for use in low and middle income countries. Biomed Central Research Notes doi.org/10.1186/s13104-022-06039-7.
Kanagasubbulakshmi, S., & Kadirvelu, K. (2017). Green Synthesis of Iron Oxide Nanoparticles using Lagenaria Siceraria and Evaluation of its Antimicrobial Activity. Defence Life Journal, 2,4, pp. 422-427. doi: 10.14429/dlsj.2.12277
Laurent, S., Forge, D., & Port, M., Roch, A., Robic, C., Elst, L. V. and Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chemical Reviews, 108, 6, pp. 2064–2110. doi: 10.1021/cr068445e.
Lesiak B, Rangam N, Jiricek P, Gordeev I, Tóth J, Kövér L, Mohai M., & Borowicz, P. (2019). Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Frontiers in Chemistry, 7, 642. doi: 10. 3389/fchem.2019.00642
Mishra, A. K., & Ramaprabhu, S. (2011). Nano magnetite decorated multiwalled carbonnanotubes: A robust nanomaterial for enhanced carbon dioxide adsorption. Energy and Environmental Science, 4, 889 – 895. doi: 10.1039/c0ee00076k
Obode, O. C., Adebay, A.H. & Li, C. (2021). Phytochemical and toxicological evaluations of Prosopis Africana (GUILL. and PERR.) extract on albino wistar rats. Toxicological Research, (2021) 37, pp. 183–195 doi.org/10.1007 -/s43188-020-00052-3
Ogoko, E. C., Kelle, H. I., Akintola, O. & Eddy, N. O. (2023). al. Experimental and theoretical investigation of Crassostrea gigas (gigas) shells based CaO nanoparticles as a photocatalyst for the degradation of bromocresol green dye (BCGD) in an aqueous solution. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03742-8
Parajuli, K., Sah, A. K., & Paudyal, H. (2020) Green Synthesis of Magnetite Nanoparticles Using Aqueous Leaves Extracts of Azadirachta indica and Its Application for the Removal of As(V) from Water. Green and Sustainable Chemistry 10, 117-132, doi.org/10.4236/gsc.2020.1040-09
Prasad, C .H., Srinivasulu, K., & Venkateswarlu, P. (2015). Catalytic Reduction of 4-Nitrophenol Using Biogenic Silver Nanoparticles Derived from Papaya (Carica papaya) Peel extract. Industrial Chemistry Journal. 1 (1). doi: 10.4172/2469-9764.1000104
Rajendran, K., Balakrishnan G. S., & Kalirajan, J. (2015). synthesis of magnetite nanoparticles for arsenic removal from groundwater pond. International Journal of PharmTech Research, 8(4):670- 677
Ravichandran, V., Vasanthi, S., Shalini, S., Ali Shah, S. A., Tripathy, M., & Paliwal, N. (2019). Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results in physics. https://doi.org/10.1016/j.rinp.2019.102565.
Sentil, M. & Ramesha, C. (2012). Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity On Pseudomonas aeruginosa. Digest Journal of Nanomaterials and Biostructures, 7, 3, pp. 1655-1660
Shakhawat, H., Muhammed ,Y., Shujit, C., Tutun, D., Otun, S., Mizanur, R., Jahidul, I., & Ommay, H. (2020). Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Helion, (6): eo4603.
Páez, M. R., Ochoa-Muñoz, Y. & Rodriguez-Páez, J. E. (2019). Efficient removal of a glyphosate-based herbicide from water using ZnO nanoparticles (ZnO-NPs),
Biocatalysis and Agricultural Biotechnology, 22, doi.org/10.1016/j. -bcab. 2019.101434.
Sharma, G., Kumar, A., Naushad, M., & Kumar, A. (2018). Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites. Journal of Cleaner Production, 172, pp. 2919–2930. doi.org/10.1016/j.jclepro. 2017.11.122.
Sovan, L. P., Utpal, J., Manna, P. K., Mohanta, G. K., Manavalan, R. (2011). Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Sciences. 1, 6, pp. 228-234
Spivakov, A., Lin., C., Chang, L., Wang, C., & Sarychev , D. (2020). Magnetic and Magneto-Optical Oroperties of Iron Oxides Nanoparticles Synthesized under Atmospheric Pressure. Nanomaterials, 10, 9, pp. 1888. doi.org/10.3390/nano -10091888
Wan Y, Xu W, Ren X, Wang Y, Dong B., & Wang L (2020) Microporous frameworks as promising platforms for antibacterials strategies against oral diseases. Front.Bioeng. Biotechnol. 8, 628. doi: 10.3389/fbioe.2020.0062
Wiley, B., Sun, Y., Mayers, B. & Xia, Y. (2006) Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry: A European Journal, 11, 454–463.
Wu W, Wu Z, Yu, T., Jiang, C., & Kim, W.S. (2015). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials. 16(2):023501. https://doi.org/10.1088/1468-6996/16/2/023501
Yadav, V. K., Ali, D., Khan, S. H. Gnanamoorthy, G., Choudhary., Yadav, K. K., Thai, V. N., Hussain, S. A., & Manhrdas, S. (2020). Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials doi:10.3390/nano10081551
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal and Author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.