Temperature Programmed Desorption Approach in Understanding the Development of Semiconductors and Catalyst
Keywords:
Desorption, Catalysis, Temperature Programmed, SemiconductorAbstract
Communication in Physical Sciences, 2023, 10(1): 213-229
Author: Asishana Paul Onivefu
Received: 14 August 2023/Accepted 20 November 2023
This comprehensive article review delves into the extensive utility of temperature-programmed desorption (TPD) as a valuable technique for understanding the intricate development of semiconductors and catalysts. TPD serves as a powerful tool that provides profound insights into the surface chemistry of materials, enabling researchers to gain a comprehensive understanding of various crucial aspects. The article covers a wide range of TPD aspects, including the analysis of surface functional groups, system temperature control, the impact of oxidation and surface treatment, the significance of heat treatment, the dynamics of adsorption and desorption processes, the thermodynamics underlying TPD measurements, surface group characterization techniques, accurate analysis, and measurements considerations, and the importance of sequential surface treatment. By comprehending these multifaceted aspects, researchers can effectively optimize the performance of semiconductors and catalysts, as well as develop novel materials with enhanced properties. Ultimately, the article emphasizes the remarkable versatility and power of TPD in the dynamic realm of semiconductor and catalyst development.
Downloads
References
Altamira. (2022). https://www.altamirainstruments.com/notes/5-temperature-programmed-desorption-of-adsorbed-species-from-catalyst-surfaces.html. Temperature-programmed desorption of adsorbed species from catalyst surfaces.
Belhachemi, M., & Addoun, F. (2011). Effect of Heat Treatment on the Surface Properties of Activated Carbons. E-Journal of Chemistry, 8, 3, pp. 992–999. https://doi.org/10.1155/2011/649254
Deng, F., Zou, J.-P., Zhao, L.-N., Zhou, G., Luo, X, & Luo, S. L. (2019). Nanomaterial-Based Photocatalytic Hydrogen Production. In Nanomaterials for the Removal of Pollutants and Resource Reutilization (pp. 59–82). Elsevier. https://doi.org/10.1016/B978-0-12-814837-2.00003-2
DeRita, L., Dai, S., Lopez-Zepeda, K., Pham, N., Graham, G. W., Pan, X., & Christopher, P. (2017). Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2. Journal of the American Chemical Society, 139, 40, pp. 14150–14165. https://doi.org/10.1021/jacs.7b07093
Falconer, J. L., & Schwarz, J. A. (1983). Temperature-Programmed Desorption and Reaction: Applications to Supported Catalysts. Catalysis Reviews, 25, 2, pp. 141–227. https://doi.org/10.1080/01614948308079666
Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., & Órfão, J. J. M. (1999). Modification of the surface chemistry of activated carbons. Carbon, 37(9), 1379–1389. https://doi.org/10.1016/S0008-6223(98)00333-9
Fritz, O. W., & Hüttinger, K. J. (1993). Active sites and intrinsic rates of carbon-gas reactions—a definite confirmation with the carbon-carbon dioxide reaction. Carbon, 31(, 6, pp. 923–930. https://doi.org/10.1016/0008-6223(93)90193-E
Herold, F., Gläsel, J., Etzold, B. J. M., & Rønning, M. (2022). Can Temperature-Programmed Techniques Provide the Gold Standard for Carbon Surface Characterization? Chemistry of Materials, 34(19), 8490–8516. https://doi.org/10.1021/acs.chemmater.2c02449
Ishii, T., & Kyotani, T. (2016). Temperature Programmed Desorption. In Materials Science and Engineering of Carbon (pp. 287–305). Elsevier. https://doi.org/10.1016/B978-0-12-805256-3.00014-3
Jentoft, F. C. (2013). Solid Acids and Bases. In Comprehensive Inorganic Chemistry II (pp. 205–230). Elsevier. https://doi.org/10.1016/B978-0-08-097774-4.00720-8
Kalijadis, A., Vukcevic, M., Jovanovic, Z., Lausevic, Z., & Lausevic, M. (2011). Characterization of surface oxygen groups on different carbon materials by the Boehm method and temperature programmed desorption. Journal of the Serbian Chemical Society, 76(5), 757–768. https://doi.org/10.2298/JSC091224056K
Kim Kinoshita. (1988). Carbon: Electrochemical and Physicochemical Properties. ISBN: 978-0-471-84802-8.
Kim, P., Van der Mynsbrugge, J., Aljama, H., Lardinois, T. M., Gounder, R., Head-Gordon, M., & Bell, A. T. (2022). Investigation of the modes of NO adsorption in Pd/H-CHA. Applied Catalysis B: Environmental, 304, 120992. https://doi.org/10.1016/j.apcatb.2021.120992
Konh, M., Janotti, A., & Teplyakov, A. (2021). Molecular Mechanism of Thermal Dry Etching of Iron in a Two-Step Atomic Layer Etching Process: Chlorination Followed by Exposure to Acetylacetone. The Journal of Physical Chemistry C, 125(13), 7142–7154. https://doi.org/10.1021/acs.jpcc.0c10556
Krasnikova, I. V., Mishakov, I. V., & Vedyagin, A. A. (2019). Functionalization, Modification, and Characterization of Carbon Nanofibers. In Carbon-Based Nanofillers and Their Rubber Nanocomposites (pp. 75–137). Elsevier. https://doi.org/10.1016/B978-0-12-817342-8.00005-6
Langhammer, D., Kullgren, J., & Österlund, L. (2022). Adsorption and Oxidation of NO 2 on Anatase TiO2: Concerted Nitrate Interaction and Photon-Stimulated Reaction. ACS Catalysis, 12(16), 10472–10481. https://doi.org/10.1021/acscatal.2c03334
Leon y Leon, C. A., Solar, J. M., Calemma, V., & Radovic, L. R. (1992). Evidence for the protonation of basal plane sites on carbon. Carbon, 30(5), 797–811. https://doi.org/10.1016/0008-6223(92)90164-R
Marchon, B., Carrazza, J., Heinemann, H., & Somorjai, G. A. (1988). TPD and XPS studies of O2, CO2, and H2O adsorption on clean polycrystalline graphite. Carbon, 26(4), 507–514. https://doi.org/10.1016/0008-6223(88)90149-2
Nevskaia, D. M., Santianes, A., Muñoz, V., & Guerrero-Ruı́z, A. (1999). Interaction of aqueous solutions of phenol with commercial activated carbons: an adsorption and kinetic study. Carbon, 37(7), 1065–1074. https://doi.org/10.1016/S0008-6223(98)00301-7
Otake, Y., & Jenkins, R. G. (1993). Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon, 31(1), 109–121. https://doi.org/10.1016/0008-6223(93)90163-5
Pan, Z., & Yang, R. T. (1992). Strongly bonded oxygen in graphite: detection by high-temperature TPD and characterization. Industrial & Engineering Chemistry Research, 31(12), 2675–2680. https://doi.org/10.1021/ie00012a008
Pavan M. V. Raja, & Andrew R. Barron. (2023). Temperature-Programmed Desorption Mass Spectroscopy Applied in Surface Chemistry. Https://Chem.Libretexts.Org/Bookshelves/Analytical_Chemistry/Physical_Methods_in_Chemistry_and_Nano_Science_(Barron)/05%3A_Reactions_Kinetics_and_Pathways/5.03%3A_Temperature-Programmed_Desorption_Mass_Spectroscopy_Applied_in_Surface_Chemistry.
Petrovic, B., Gorbounov, M., & Masoudi Soltani, S. (2021). Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous and Mesoporous Materials, 312, 110751. https://doi.org/10.1016/j.micromeso.2020.110751
Rakić, V., & Damjanović, L. (2013). Temperature-Programmed Desorption (TPD) Methods (pp. 131–174). https://doi.org/10.1007/978-3-642-11954-5_4
Rios, R. V. R. A., Silvestre-Albero, J., Sepúlveda-Escribano, A., & Rodríguez-Reinoso, F. (2007). Liquid phase removal of propanethiol by activated carbon: Effect of porosity and functionality. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 300(1–2), 180–190. https://doi.org/10.1016/j.colsurfa.2006.10.003
Rocha, R. P., Pereira, M. F. R., & Figueiredo, J. L. (2023). Characterisation of the surface chemistry of carbon materials by temperature-programmed desorption: An assessment. Catalysis Today, 418, 114136. https://doi.org/10.1016/j.cattod.2023.114136
Rodriguez, D. J., Lau, C. Y., Friese, A. M., Magasinski, A., Yushin, G., & Anderson, S. L. (2022). High-Temperature Oxidation of Single Carbon Nanoparticles: Dependence on the Surface Structure and Probing Real-Time Structural Evolution via Kinetics. Journal of the American Chemical Society, 144(11), 4897–4912. https://doi.org/10.1021/jacs.1c12698
Schmid, M., Parkinson, G. S., & Diebold, U. (2023a). Analysis of Temperature-Programmed Desorption via Equilibrium Thermodynamics. ACS Physical Chemistry Au, 3(1), 44–62. https://doi.org/10.1021/acsphyschemau.2c00031
Schmid, M., Parkinson, G. S., & Diebold, U. (2023b). Analysis of Temperature-Programmed Desorption via Equilibrium Thermodynamics. ACS Physical Chemistry Au, 3(1), 44–62. https://doi.org/10.1021/acsphyschemau.2c00031
Thomas, K. M. (2023). Perspectives of Gas Adsorption and Storage in Kerogens and Shales. Energy & Fuels, 37(4), 2569–2585. https://doi.org/10.1021/acs.energyfuels.2c03667
Wang, Z., & Zhu, Z. (2021). Experimental Study on the Effects of Different Heating Rates on Coalbed Methane Desorption and an Analysis of Desorption Kinetics. ACS Omega, 6(50), 34889–34903. https://doi.org/10.1021/acsomega.1c05562
Zielke, U., Hüttinger, K. J., & Hoffman, W. P. (1996). Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon, 34(8), 983–998. https://doi.org/10.1016/0008-6223(96)00032-2.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal and Author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.