Enhancing AgBiS2 Solar Cell Efficiency: Buffer Layer Comparison and Parameter Optimization
Keywords:
Buffer layer, AgBiS2, Defect densityAbstract
This research presents a comprehensive numerical simulation-based examination of AgBiS2 thin-film solar cell optimization, investigating various device parameters and buffer layer materials. The study evaluates the performance of CdS, CdZnS, and ZnS buffer layers, both with and without an Sb2S3 back surface field (BSF), utilizing SCAPS-1D simulation software. Findings indicate that CdZnS outperforms other buffer materials, achieving a maximum efficiency of 14.81% when combined with the Back Surface Field (BSF). The investigation analyzes the impact of multiple factors, including absorber layer thickness, defect density, temperature, and parasitic resistances. An optimal absorber thickness of 250 nm is identified, while the negative effects of increasing defect density and series resistance are demonstrated. Among the examined buffer materials, CdZnS exhibits superior thermal stability, maintaining high performance across a wide range of temperatures, and thus emerges as a promising candidate for high-temperature solar cell applications. The study emphasizes the advantageous characteristics of AgBiS2, particularly its high absorption coefficient and appropriate band gap, establishing its potential for photovoltaic applications.
Downloads
Published
Issue
Section
Similar Articles
- Esharive Ogaga, Onimisi Martins, Abdulateef Onimisi Jimoh, Akudo Ernest orji, Aigbadon Godwin Okumagbe, Achegbulu Ojonimi Emmanuel, Assessment of Geotechnical Attributes of Laterites as Sub-base and Sub-Grade Materials in Parts of Northern Anambra Basin Nigeria: Implications for Road Pavement Construction , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Fabian James Umoren, Mfon Clement Utin, Resource Recovery from Maize Wastes; Synthesis and Characterization of Silicon Oxide Nanoparticles , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Abubakar Aliyu Umar, Aminu Ismaila, Khaidzir Hamza, Lattice Calculations and Power Distribution for Nigeria Research Reactor-1 (NIRR-1) using Serpent Code , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Chukwunenyoke Amos-Uhegbu, Mmaduabuchi Uche Uzoegbu, Okwuchukwu Peter Odoh , Chukwudike Dandy Akoma , Hydrogeology And Ground Water Potentials Of The Pre-Cambrian Basement Rocks Of Tabe And Environs In Gwagwalada Area, Abuja North Central, Nigeria , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Humphrey Sam Samuel, Ugo Nweke-Maraizu, Gani Johnson, Emmaneul Etim Etim, A Review of Theoretical Techniques in Corrosion Inhibition Studies , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Henrietta Ijeoma Kelle , Musa Runde, Valorization of an Agricultural Waste-Corncob: Investigation of Potassium Oxide from Corncob Ash Crystals as an Antiseptic and Disinfectant Agent , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Attah Chuks Emmanuel, Gloria Chika Udeokpote, Ethanol Extract of Vernonia amygdalina Leaf as a Green Corrosion Inhibitor for Carbon Steel in Solution of HCl , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3
- Funmilayo Ayedun, Probing the Effects of Atomic Position Changes on the Structural, Electronic, and Thermoelectric Properties of the Half-Heusler ZrPtPb Compound: A First-Principles Study , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Onanuga Omotayo Aina, Titus Morrawa Ryaghan, Bello Musa Opeyemi, Momoh Daniel Clement, Goat Horn Biochar as a Low-Cost Adsorbent for the Removal of Cadmium and Zinc ions in Aqueous Solution , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3
- Oyebola Olusola Olurotimi, Belewu Fatai Damilola, Balogun Rilwan Oluwanishola,, Adegboyega Anthony Babajide, Oyebode Daniel Oluwatimilehin, Exploring the Thermoelectric Potential of Trigonal MgS2: A Computational Investigation Using DFT and Boltzmann Transport Theory , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
You may also start an advanced similarity search for this article.