Combination-Difference Synchronization of Fractional Order Chaotic Duffing Oscillator and Financial Systems With Parameter Mismatch

Authors

  • Kayode Stephen Ojo University of Lagos, Lagos, Nigeria
  • Moruf Busari University of Lagos, Lagos, Nigeria
  • Abidemi Emmanuel Adeniji Bells University of Technology, Ota, Ogun State, Nigeria
  • Adebowale Babatunde Adeloye University of Lagos, Lagos, Nigeria

Keywords:

Parameter mismatch, Combination-difference synchronization, fractional order systems, backstepping technique, Duffing oscillators, financial systems

Abstract

Communication in Physical Sciences, 2024, 11(1):01-13

Authors: Kayode Stephen Ojo,, Moruf Busari, Abidemi Emmanuel Adeniji, Adebowale Babatunde Adeloye

Received: 17 September 2023/Accepted: 26 January 2024

This research work is born out of the desire to design an effective synchronization scheme that could give a better understanding of the coordination of multiple processes and effective communication among various components of a complex system or between different groups of complex systems  As a result, this research work presents combination-difference synchronization of fractional order chaotic (FOC) systems with parameter mismatches evolving from different initial conditions. Using the FOC Duffing oscillators and FOC financial systems as a paradigm, the backstepping technique is applied to design control laws for the achievement of combination-difference synchronization. These control laws enable the differences between the sums of the variables of the drive systems and differences of the variables of the response systems to converge to zero which confirms the achievement of combination difference synchronization. Numerical simulations provided confirm the effectiveness of the combination-difference synchronization technique. This result could be used to explain different interactions among particles and neurons of the same or different dynamical behaviour.

Downloads

Download data is not yet available.

Author Biographies

Kayode Stephen Ojo, University of Lagos, Lagos, Nigeria

Department of Physics

Moruf Busari, University of Lagos, Lagos, Nigeria

Department of Physics

Abidemi Emmanuel Adeniji, Bells University of Technology, Ota, Ogun State, Nigeria

Department of Physical Sciences

Adebowale Babatunde Adeloye, University of Lagos, Lagos, Nigeria

Department of Physics

References

Akif A, Rajagopal, K., Durdu, A., Pala, M. A., Boyraz, O.F. & Yildiz, M. Z. (2021). A simple fractional-order chaotic system based on memristor and memcapacitor and its synchronization application, Chaos Solitons and Fractals, 152, 3. DOI:10.1016/j.chaos.2021.111306.

Bagley, R. L. (1998). On the Fractional Calculus Model of Viscoelastic Behavior. Journal of Rheology, 30, 133-155. doi.org/10.1122/1.549887

Bagley, R. L. & Torvik, P. J. (1984). On the appearance of the fractional derivative in the behavior of real materials. Journal of Applied Mechanic, 51, 2, pp. 294±8.

Batiha, I., Oudetallah, J., Ouannas, A., Al-Nana, A. A. & Jubril, I. (2021). Tuning the Fractional-order PID-Controller for Blood Glucose Level of Diabetic Patients, Journal of Advances in Soft Computing and its Applications, 13, 2. DOI: 10.1177/0142331217729425.

Boulkroune A, Bouzeriba A, & Bouden T. (2016). Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems. Neurocomputing, 173. doi:10.1016/j. -neucom.2015.08.003

Debbouche, N., Ouannas, A., Batiha, M. I., Grassi, G., Kaabar, M. K. A., Jahanshahi, H., Aly, A. A & Aljuaid, A. M. (2021). Chaotic behavior analysis of a new incommensurate fractional-order Hopfield 15 Neural Network System, Complexity, 3394666, pp. 11. doi.org/ -10.1155/2021/3394666.

Dongmo, E. D., Ojo, K. S., Woafo, P. & Njah, A. N. (2022). Difference-difference synchronizations of chaotic hyperchaotic systems. Journal of Applied Nonlinear Dynamics, 11, 2, pp. 487-497.

Gerhards, M. & Schlerf, M. R. (2018). Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms. Remote Sensing, 10, 1139. doi.org/10.3390/rs10071139.

Golmankhaneh, A. K, Arefi, R., & Baleanu, D. (2015). Synchronization in a nonidentical fractional order of a proposed modified system. Journal of vibration and control, 21, 6, pp. 1154–1161.

Hilfer, R. (2001). Applications of fractional calculus in physics. world scientific, Singapore. doi.org/10.1142/3779.

Huang, Y., Wang, D., Zhang, J., & Guo, F. (2018). Controlling and synchronizing a fractional order chaotic system using stability theory of a time-varying fractional-order system. PLOS ONE,13, 3, e0194112. doi.org/10.1371/journal. -pone.0194112.

Jajarmi A, Hajipour Mojtaba, & Baleanu D. (2017). New aspects of the adaptive synchronization and hyperchaos suppression of a financial

model, Chaos solutions and fractals,99, pp. 285–296.

Korsch, H.J., Jodl, H.J. and Hartmann, T. (2007). Chaos: A Program collection for the PC. Springer Science & Business Media, Berlin.

Lei, Y. & Zheng, W. (2015). Research on Robot automation and control problems.The World of Inverters, 3, pp. 86-88.

Li, C. L., & Zhang, J. (2016). Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability. International Journal of Systems Science, 47, 10, pp. 2440–2448.

Li, R. H., & Chen, W. S. (2014). Lyapunov-based fractional--rder controller design to synchronize a class of fractional order chaotic systems. Nonlinear Dynamics, 76, 1, pp.785–795.

Maheri, M., & Arifin, N. M. (2016). Synchronization of two different fractional-order chaotic systems with unknown parameters using a robust adaptive nonlinear controller. Nonlinear Dynamics, 85, 2, pp. 825–838.

Majdoul, R., Touati, A. & Ouchatti, A., Taouni, A. & Abdelmounim. E. (2022). Comparison of backstepping, sliding mode and PID regulators for a voltage inverter. International Journal of Electrical and Computer Engineering (IJECE), 12, 1, pp. 166-178. doi.org/10.1 -1591/ijece.v12i1.pp166-178.

Nourian, A., & Balochian, S. (2016). The adaptive synchronization of fractional-order Liu chaotic system with unknown parameters. Pramana, 86, 6, pp.1401–1407.

Ogunjo S.T., Ojo K.S., & Fuwape I.A. (2017). Comparison of three different synchronization schemes for fractional chaotic systems. In: Azar A., Vaidyanathan S., Ouannas A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, 688, pp. 471-495. Springer, Cham.

Ojo, K. S., Ogunjo, S. T. & Fuwape, ·I. A. (2022). Modified hybrid combination synchronization of chaotic fractional order systems, Soft Computing, 26, pp.11865–11872.

doi.org/10.1007/s00500-022-06987-z.

Ojo, K. S., Njah, A. N., & Olusola, O. I. (2016). Generalized compound synchronization of chaos in different order chaotic Josephson junctions. International Journal of Dynamics and

Control, 4, pp. 31–39.

Ojo, K. S., Njah, A. N. & Olusola. O. I. (2015). Compound-combination synchronization of chaos in identical and different orders chaotic systems. Archives of Control Sciences, 25(LXI), 4, pp. 463–492.

Ojo, K. S., Njah, A. N. & Ogunjo, S. T. (2013). Comparison of backstepping and modified active control in projective synchronization of chaos in an extended Bonhoffer–van der Poloscillator, Pramana Journal of Physics, Indian Academy of Sciences, 80, 5, pp. 825–835.

Pandey, N., Pandey, R. & Verma, R. (2022). Fractional-Order Design Devices, Circuits, and Systems Volume 3 in Emerging Methodologies and Applications in Modelling. Chapter Fourteen - Higher-order fractional elements: realizations and applications, Academic Press (Elsevier), pp. 403-436.

Podlubny, I. (1999). Fractional differential equations. Academic, New York.

Rahman, Z. S. A., Jasim, B. H., Al-Yasir, Y.I.A. & Abd-Alhameed, R. A. (2021). High-security image encryption based on a novel simple fractional-order memristive chaotic system with a single unstable equilibrium point, Electronics, 10, 24, 3130. doi.org/10.3390/electr onics -10243130.

Rajagopal, K., Cicek, S., Akgul, A., Safari, S. & Karthikeyan, A. (2020). Chaotic cuttlesh: King camouage with self excited and hidden flow, its fractional-order form and communication design with fractional order form, Discreet and Continuous Dynamical Systems Series B, 5, 3, pp. 1001–1013. doi:10.3934/dcdsb.2019205.

Razminia, A. & Baleanu D. (2013). Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics, 23, 7, pp. 873–879.

Runzi, L & Yingian, W. (2012). Finite-time stochastic combination synchronization of threedifferent chaotic systems and its application in secure communication, Chaos, 22, 02310901-02310910.

Runzi, L & Yinglan, W. (2012). Active backstepping-based combination synchronization of three chaotic systems. Advanced Science, Engineering and Medicine, 4, 142-147.

Runzi, L., Yinglan, W & Shucheng, D. (2011). Combination synchronization of three chaotic classic chaotic systems using active backstepping, Chaos, 21, 0431141-0431146.

Shao, S. Y., Chen, M., & Yan, X. H. (2016). Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dynamics, 83, 4, pp.1855–1866.

Shen, H., Iorio, J. & Li, N. (2019). Sliding Mode Control in Backstepping Framework for a Class of Nonlinear Systems, Journal of Marine Science and Engineering, 7, 12, 452. doi:10.3390/jmse7120452.

Soukkou, A., Boukabou, A. & Leulmi, S. (2016). Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems. Nonlinear Dynamics, 85, 4, 2183–2206.

Sun, J., Shen, Y., Zhang, G., Xu, C & Cui, G. (2013). Combination–combination synchronization among four identical or different chaotic systems, Nonlinear Dynamics, 73, 1211-1222.

Sun, J., Shen, Y., Yin, Q. & Xu, C. (2013). Compound synchronization of four memristor chaotic oscillator systems and secure communication, Chaos, 23, 012140.

Wu, G. C., & Baleanu, D. (2014). Chaos synchronization of the discrete fractional logistic map. Signal processing, 102, pp. 96–99.

Downloads

Published

2024-01-30