Synthesis and characterization of Silicon Oxide Nanoparticles using Plantain Peel as a Precursor
Keywords:
Nanoparticles, precursor, plantain peels, production, propertiesAbstract
Communication in Physical Sciences, 2024, 11(1):29-38
Authors: Nsikak Bassey Essien, Chukwu Obaji Daniel, Raphael, Mmenyene Paul and Ukeme Ekop
Received: 14 July 2023/Accepted:28 February 2024
This study explores the synthesis and characterization of silicon oxide nanoparticles (SiONPs) using plantain peels as a sustainable precursor. SiONPs hold immense promise in various fields due to their exceptional attributes, and there is a growing need for eco-friendly synthesis methods. The research addresses this need by using agricultural waste materials, specifically plantain peels, as a renewable and cost-effective source for SiONP production. In the study, plantain peel samples were dried, ashed and converted to Si(OH)2 after a series of reactions with HCl and NaOH respectively. The Si(OH)2 obtained was calcined at 700 °C for two hours. The silicon oxide nanoparticles obtained were characterized with an ultraviolet-visible spectrophotometer, X-ray diffractometer and nitrogen adsorption study based on Brunaer-Emmett-Teller as well as other models. The results obtained showed that the XRD spectrum indicated a principal peak at 69, which was attributed to Si(111) or Si(40). The crystallite size of the silicon oxide nanoparticles obtained from the plantain peels was 0.23 nm while the evaluated particle size was 3.012 nm, confirming a mesoporous dimension. The absorption peaks obtained from the ultraviolet-visible analysis indicated a wavelength of maximum absorption at 342 nm and a corresponding bandgap of 3.6 eV. The materials are regarded as a highly porous semiconductors with unique potentials for environmental, optical, electrical and other applications. These results collectively highlight the eco-friendly synthesis and versatile applications of SiONPs, emphasizing their significance in advancing nanotechnology across diverse industries and scientific disciplines.
Downloads
References
Abdul Ghani, N. A. M., Saeed, M. A. & Hashim, I. H. (2017). Thermoluminescence (TL) response of silica nanoparticles subjected to 50 Gy gamma irradiation.Maylaysian Journal of Fundamental and Applied Sciences, 13, 3, doi:10.11113/mjfas.v13n3.593
Adach, K., Kroisova, D. & Fijalkowski, M. (2021) Biogenic silicon dioxide nanoparticles processed from natural sources. Particulate Science and Technology, 39, 4, pp. 481-489, DOI: 10.1080/02726351.2020.1758857.
Albertini, P.P., Newton, M.A., Wang, M. et al. (2024). Hybrid oxide coatings generate stable Cu catalysts for CO2 electroreduction. Nature Materials, doi.org/10.1038/s41563-024-01819-x.
Arce, J. V. R., Alburquenque, D., Gautier, J. L., Zuniga, G. A & Herrera, F. (2013). Simple steps for synthesis of silicon oxide mesoporous materials used as template. Journal of Chilean Chemical Society, 58, 4, http://dx.doi.org/10.4067/S0717-97072013000400020
Azib, T., Thaury, C., Cuevas, F., Leroy, E., Jordy, C., Marx, N & Latroche, M. (2021). Impact of surface chemistry of silicon nanoparticles on the structural and electrochemical properties of Si/Ni3.4Sn4 composite anode for li-ion batteries. Nanometerials (Basel), 11, 1, doi: 10.3390/nano11010018
Azlina, H. N., Hasnidawani, J. N., Norita, H. & Surip, S. N. (2016). Synthesis of SiO2 Nanostructures Using Sol-Gel Method. Acta Physica Polonica A, 29, 4, pp. 842-844.
Bai, Y., Li, F., Zhang, Y. & Bin Ding, Y. (2023). Silicon dioxide nanoparticles compromise decidualization via autophagy impairment to possibly cause embryo resorption, Toxicology Letters, 381, pp. 72-82, https://doi.org/10.1016 /j.toxlet.2023.05.003.
Biradar, A. I., Sarcalkar, P. D., Tell, S. R., Pawar, C. A., Patil, P. S. & Prasad, N. R. (2021). Photocatalytic degradation of dyes using one-step synthesized silica nanoparticles. Materials Today Proceedings, 43, S1, doi:10.1016/j.matpr.2020.11.946.
Canchanya-Huaman, Y., Mayta-Armas, A. F., Pomalaya-Velasco, J., Bendezú-Roca, Y., Guerra, J. A. & Ramos-Guivar, J. A. (2021). Strain and grain size determination of CeO2 and TiO2 nanoparticles: comparing integral breadth methods versus Rietveld, μ-Raman, and TEM. Nanomaterials (Basel). 11, 9, 2311. doi: 10.3390/nano11092311.
Chang, H., Kao, M. J., Hsu, F. C. and Peng, D. X.(2014). Synthesis and characterization of sio nanoparticles and their efficacy in chemical mechanical polishing steel substrate. Advances in Materials Science and Engineering, https://doi.org/10.1155/2014/691967.
Chavali, M. S. & Nikolova, M. P. (2019). Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1, 607, doi.org/10.1007/s42452-019-0592-3.
.
Daulay, ., Andriayani, Marpongahtun & Gea,S. (2022). Synthesis Si nanoparticles from rice husk as material active electrode on secondary cell battery with X-Ray diffraction analysis. South African Journal of Chemical Engineering, 42, pp. 32-41, doi.org/10.1016/j.sajce.2022.07.004.
Eddy, N. O & Garg, R. (2021). CaO nanoparticles: synthesis and application in water purification. Chapter 11. In: Handbook of research on green synthesis and applications of nanomaterials. Garg, R., Garg, R. and Eddy, N. O, edited. IGI Global Publisher, USA. doi: 10.4018 -/978-1-7998-8936.
Eddy, N. O., Garg, R., Garg, R., Eze, S. I., Ogoko, E. C., Kelle, H. I., Ukpe, R. A., Ogbodo, R. & Chijoke, F. (2023b). Sol-gel synthesis, computational chemistry, and applications of CaO nanoparticles for the remediation of methyl orange contaminated water. Advances in Nano Research, doi.org/10.12989/anr.2023.15.1.000.
Eddy, N. O., Garg, R., Garg, R., Garg, R., Ukpe, R. A. & Abugu, H. (2024b). Adsorption and photodegrade -ation of organic contaminants by silver nanoparticles: isotherms, kinetics, and computational analysis. Environ Monit Assess, 196, 65, doi.org/10.1007/s10661-023-12194-6.
Eddy, N. O., Garg, R., Ukpe, R. A., Ameh, P. O., Gar, R., Musa, R., Kwanchi, D., Wabaidur, S. M., Afta, S., Ogbodo, R., Aikoye, A. O. & Siddiqu, M. (2024a). Application of periwinkle shell for the synthesis of calcium oxide nanoparticles and in the remediation of Pb2+-contaminated water. Biomass Conversion and Biorefinery, doi: 10.1007/s13399-024-05285-y.
Eddy, N. O., Jibrin, J. I., Ukpe, R. A., Odiongenyi, A. O., Kasiemobi, A. M., Oladele, J. O. & Runde, M. (2024). Experimental and theoretical investigations of photolytic and photocatalysed degradations of crystal violet dye (CVD) in water by oyster shells derived CaO nanoparticles (CaO-NP), Journal of Hazardous Materials Advances, 100413, https://doi.org/10.1016/j.hazadv.2024.100413
Eddy, N. O., Odiongenyi, A. O., Garg, R., Ukpe, R. A., Garg, R., El Nemir, A., Ngwu, C. M. & Okop, I. J. (2023c). Quantum and experimental investigation of the application of Crassostrea gasar (mangrove oyster) shell–based CaO nanoparticles as adsorbent and photocatalyst for the removal of procaine penicillin from aqueous solution. Environmental Science and Pollution Research, doi:10.1007/s11356-023268 -68-8.
Eddy, N. O., Odiongenyi, A. O., Garg, R., Ukpe, R. A., Garg, R., Ogoko, E. C. & Kelle, H. I. (2023d), Ecotoxicological aspect of nanotechnology. In nanotechnology for sustainable Agriculture, Food and Environment. http://doi.org/10.1201/9781003397861-16.
Eddy, N. O., Ukpe, R. A., Garg, R., Garg, R., Odionenyi A. O., Ameh, P. & Akpet, I, N. (2023a). Enhancing water purification efficiency through adsorption and photocatalysis: models, application and challenges. International Journal of Environmental Analytical Chemistry, doi: 10.1080/03067319.2023.2295934.
Eddy, N. O., Garg, R., Garg, R., Aikoye, A. and Ita, B. I. (2023). Waste to resource recovery: mesoporous adsorbent from orange peel for the removal of trypan blue dye from aqueous solution. Biomass Conversion and Biorefinery, 13: 13493-13511, doi: 10.1007/s13399-022-02571-5.
Edriss, M. & Adinehnia, S. M. (2011). Synthesis of Silica Nanoparticles by Ultrasound-Assisted Sol-Gel Method: Optimized by Taguchi Robust Design. Chemical Engineering Technology, 34, 11, pp. 1813-1819, https://doi.org/10. -1002/ceat.201100195.
Garg, R., Garg, R., Sharma, A., Anjun, A. & Eddy, N. O. (2023). Introduction to nanotechnolofy and nanomaterials. generation In nanotechnology for sustainable Agriculture, Food and Environment. http://doi.org/10.1201/9781 -003397861-1.
Garg, R., Garg, R., Eddy, N. O., Almohana, A. I., Fahad, S., Khan, M. A. and Hong, S. H. (2022). Biosynthesized silica-based zinc oxide nanocomposites for the sequestration of heavy metal ions from aqueous solutions. Journal of King Saud University-Science https://doi.org/10.1016/j.jksus. -2022.101996
Hodhod, O., Khallafalla, M. S. & Osman, M. S. M. (2019). ANN models for nano silica/ silica fume concrete strength prediction, Water Science, 33, 1, pp. 118-127. doiI: 10.1080/11104929.2019.1669005
Hussin, S. H. A., Al-Hamdani, A. H. & Nazar, A. (2016). Optical and morphological characteristics for silicon dioxide NPS prepared by sol-gel method. International Journal of Scientific and Engineering Research, 7, 8, pp. 234-237.
Intartaglia, B., Bagga, K., Scotto, M., Diaspro, A. & Brandi, F. (2012). Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Optical Materials, 2, pp. 510-518
Ismail, A., Saputri, L. N. M. Z., Dwiatmoko, A. A., Susanto, B. H. & Nasikin, M. (2021) A facile approach to synthesis of silica nanoparticles from silica sand and their application as superhydrophobic material. Journal of Asian Ceramic Societies, 9, 2, pp. 665-672. doi: 10. -1080/21870764.2021.1911057.
Kelle, H. I., Ogoko, E. C., Akintola O & Eddy, N. O. (2023). Quantum and experimental studies on the adsorption efficiency of oyster shell–based CaO nanoparticles (CaONPO) towards the removal of methylene blue dye (MBD) from aqueous solution. Journal: Biomass Conversion and Biorefinery, doi:10.1007/s13399-023-04947-7.
Lee, B., Yoon, S., Lee, J. W., Kim, Y., Chang, J., Yun, J., Ro, J. C. Lee, J. & Lee, J. H. (2020). Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis. ACS Nano, 14, 12, pp.17125-17133, doi: 10.1021/acsnano.0c06809
Meijerink, A. (2024). A new route towards polarized luminescence: 0D/2D nanocomposites. Light Sci Appl, 13, 38, https://doi.org/10.1038/s41377-023-01370-5.
Meng, T., Ying, K., Hong, Y. & Xu, Q. (2020). Effect of different particle sizes of nano-SiO2 on the properties and microstructure of cement paste. Nanotechnology Reviews, https://doi.org/10.1515/ntrev-2020-0066
Naseem, T. & Durrani, T. (2021). The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology, 3, pp.59-75, doi.org/10.1016/j.enceco.2020.12.001.
Negrescu, A. M., Killian, M. S., Raghu, S. N. V., Schmuki, P., Mazare, A. & Cimpean, A. (2022). Metal oxide nanoparticles: review of synthesis, characterization and biological effects. Journal Functional Biomaterials, 13, 274. doi.org/10.3390 /jfb13040274.
Ni’mah, Y. L. Muhainah, Z. H. & Suprapto, S. (2023). Synthesis of silica nanoparticles from sugarcane bagasse by sol-gel method. Nanoparticles, 4, 1, https://doi. org/10.35702/nano.10010.
Odoemelam, S. A., Oji, E. O., Eddy, N. O., Garg, R., Garg, R., Islam, S., Khan, M. A., Khan, N. A. & Zahmatkesh, S. (2023). Zinc oxide nanoparticles adsorb emerging pollutants (glyphosate pesticide) from aqueous solution. Environmental Monitoring and Assessment, doi.org/10.1007/s10661-023 -11255-0.
Ogoko, E. C., Kelle, H. I., Akintola, O. & Eddy, N. O. (2023). Experimental and theoretical investigation of Crass -ostrea gigas (gigas) shells based CaO nanoparticles as a photocatalyst for the degradation of bromocresol green dye (BCGD) in an aqueous solution. Biomass Conversion and Biorefinery. https:// doi.org/10.1007/s13399-023-03742-8.
Owusu Prempeh, C., Hartmann, I., Formann, S., Eiden, M., Neubauer, K., Atia, H., Wotzka, A., Wohlrab, S. & Nelles, M. (2023). Comparative study of commercial silica and sol-gel-derived porous silica from cornhusk for low-temperature catalytic methane combustion. combustion. Nanomaterials, 13, 1450. https://doi.org/10.3390/nano13091450.
Pajor-Świerzy, A., Kozak, K., Duraczyńska, D., Wiertel-zochopień, A., Zawała, J. & Szczepanowicz, K. (2023) Silver shell thickness-dependent conductivity of coatings based on Ni@Ag core@shell nanoparticles. Nanotechnology, Science and Applications, 16, pp.73-84, DOI: 10.2147/NSA.S435432.
Rahimzadeh, C. Y., Barzinjy, A. A., Mohammed, A. S. & Hamad, S. M. (2022) Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles. PLoS ONE 17, 8, e0268184. https://doi.org/10.1371/journal.pone.0268184.
Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K. & Makino, K. (2005). A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci. 289, 1, pp. 125-31. doi: 10.1016/j.jcis.2005.02.019.
Roustaei, A. and Bagherzadeh, H. (2015). Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs. J Petrol Explor Prod Technol, 5, 27–33. https://doi.org/10.1007/s13202-014-0120-3.
Saravanan, S. & Dubey, R. S. (2020). Synthesis of SiO2 nanoparticles by sol-gel method and their optical and structural properties. Romanian Journal of Information Science and Technology, 23, 1, pp. 105-112.
Su, Z., Yao, C., Tipper, J., Yang, L., Xu, X., Chen, X., Bao, G., He, B., Xu, X. & Zheng, Y. (2023). Nano strategy of targeting at embryonic trophoblast cells using CuO nanoparticles for female contraception. ACS Nano, 17, 24, pp. 25185-25204, doi: 10.1021/acsnano.3c08 -267
Tapia, M. L., Betancourt-Tovar, B., Videa, M., Antunes-Ricardo, M. & Cholula-Diar, J. I. (2024). Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. Nanoscale Advances, 6, pp. 51-7, https://doi.org/10.1039/D3NA00761H.
Zarei, V., Mirzaasadi, M., Davarpanah, A., Nasiri, A., Valizadeh, M. & Hosseini, M. J. S. (2021). Environmental method for synthesizing amorphous silica oxide nanoparticles from a natural material. Processes, 9, 334, https://doi.org/10.3390/ pr9020334.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal and Author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.