Trace Elements Idetification in KCl and NaCl using Laser-Induced Breakdown Spectroscopy


IR-LIBS, trace elements, breakdown spectroscopy, atomic spectra, atomic transitions


Comnmunication in Physical Sciences 2020, 5(3): 257-262

Authors: Olusola O. Oyebola, Muteeu A. Olopade, Kayode I. Ogungbemi and Olasunkanmi I. Olusola

Received 07 May 2020/Accepted 29 May 2020
Infrared laser-induced breakdown spectroscopy (IR-LIBS) was used for trace element identification of potassium (K) and sodium (Na) in samples of potassium chloride (KCl) and sodium chloride (NaCl) respectively. IR LIBS spectra of KCl and NaCl exhibited atomic transitions within the mid-wavelength (2–5 μm) IR region consistent with atomic transitions obtained from the National Institute of Standards and Technology (NIST) atomic spectra database. Observed transitions for potassium were 2.71, 3.14, 3.16, 3.18, 3.73, 3.75, and 4.02 μm while those for sodium were 2.30, 2.34, 3.42, 4.05, and 4.38 μm. However, from the observed transitions profile, those at 2.71 μm (for potassium) and 2.20 μm (for sodium transitions) exhibited strong intensity and provided a reference for establishing IR-LIBS as a viable spectroscopic technique for trace elements identification in hybrid substance


Download data is not yet available.


Cremers, D. A., & Radziemski, L. J. (2013). Handbook of Laser-Induced Breakdown Spectroscopy: Second Edition. In Handbook of Laser-Induced Breakdown Spectroscopy: Second Edition. John Wiley and Sons.

Davis, L. M., Li, L.-Q., & Keefer, D. R. (1993). Picosecond resolved evolution of laser breakdown in gases. Journal of Physics D: Applied Physics, 26, 2, pp. 222–230.

Gonzaga, F. B., & Pasquini, C. (2008). A new detection system for laser induced breakdown spectroscopy based on an acousto-optical tunable filter coupled to a photomultiplier: Application for manganese determination in steel. Spectrochimica Acta - Part B Atomic Spectroscopy, 63, 11, pp. 1268–1273.

Harmon, R. S., De Lucia, F. C., Miziolek, A. W., McNesby, K. L., Walters, R. A., & French, P. D. (2005). Laser-induced breakdown spectroscopy

(LIBS) – an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis. Geochemistry: Exploration, Environment, Analysis, 5, 1, pp. 21–28.

Hu, F., Mei, M., Han, C., Han, B., Jiang, G., & Yang, J. (2015). Accurate multiconfiguration Dirac-Hartree-Fock calculations of transition probabilities for magnesium-like ions. Journal of Quantitative Spectroscopy and Radiative Transfer, 149, pp. 158–167.

Kim, H., Jeon, Y., Lee, W. B., Nam, S.-H., Han, S.-H., Ham, K.-S., Singh, V. K., & Lee, Y. (2019). Feasibility of Quantitative Analysis of Magnesium and Calcium in Edible Salts Using a Simple Laser-Induced Breakdown Spectroscopy Device. Applied Spectroscopy, 73, 10, pp. 1172– 1182.

Kramida, A., Ralchenko, Y., Reader, J., A., &

(2019), N. A. T. (2019). NIST Atomic Spectra



Lee, Y., Nam, S. H., Ham, K. S., Gonzalez, J., Oropeza, D., Quarles, D., Yoo, J., & Russo, R. E.

(2016). Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta - Part B Atomic Spectroscopy, 118, pp. 102–111.

Mohamed, W. T. Y. (2008). Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera. Optics & Laser Technology, 40(1), pp, 30–38.

Ng, C. W., & Cheung, N. H. (2000). Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: A feasibility demonstration. Analytical Chemistry, 72, 1, pp. 247–250.

Noll, R., Bette, H., Brysch, A., Kraushaar, M., Mönch, I., Peter, L., & Sturm, V. (2001). Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 6, pp. 637–649.

Oyebola, O., Hommerich, U., Brown, E., Yang, C. S.-C., Trivedi, S. B., Samuels, A. C., & Snyder,

A. P. (2011). Concentration dependent studies on the laser-induced mid-infrared emission from KCL-NaCl tablets. Photonics Letters of Poland, 3(4).

Oyebola, O. O., Olopade, M. A., & Ogungbemi, K.

I. (2017). Long Wave-Infrared Laser-Induced Breakdown Spectroscopy Emissions from Potassium Chloride (KCl) and Sodium Chloride (NaCl) Tablets. Journal of Science Research and Development, 17, 1, pp. 54–56.

Pasquini, C., Cortez, J., Silva, L. M. C., & Gonzaga, F. B. (2007). Laser Induced Breakdown Spectroscopy. Inernatonal Journal of Brazillian Chemical Society, 18, 3, pp. 463-512.

Primrose, W. B. (1946). CO2 Absorption. BMJ, 2(4478), pp. 667–667.

Qu, Z., Steinvall, E., Ghorbani, R., & Schmidt, F. M. (2016). Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions. Analytical Chemistry, 88, 7, pp. 3754–3760.

Radziemski, L. J., Cremers, D. A., Bostian, M., Chinni, R. C., & Navarro-Northrup, C. (2007). Laser-induced breakdown spectra in the infrared region from 750 to 2000 nm using a cooled InGaAs diode array detector. Applied Spectroscopy, 61, 11, pp. 1141–1146.

Singh, V. K., Rai, N. K., Pandhija, S., Rai, A. K., & Rai, P. K. (2009). Investigation of common Indian edible salts suitable for kidney disease by laser induced breakdown spectroscopy. Lasers in Medical Science, 24, 6, pp. 917–924.

Vadillo, J. M., Milán, M., & Laserna, J. J. (1996). Space and time-resolved laser-induced breakdown spectroscopy using charge-coupled device detection. Fresenius’ Journal of Analytical Chemistry, 355, 1, pp. 10–15.

Yang, C. S. C., Brown, E. E., Hommerich, U. H., Trivedi, S. B., Samuels, A. C., & Snyder, A. P. (2007). Mid-infrared emission from laser-induced breakdown spectroscopy. Applied Spectroscopy, 61, 3, pp. 321–326.

Yang, C. S. C., Brown, E., Hommerich, U., Trivedi, S. B., Samuels, A. C., & Snyder, A. P. (2008).

Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides. Applied Spectroscopy, 62, 6, pp. 714– 716.

Yonghoon, L. & Han, S. (2017). Analysis of magnesium, calcium and potassium in edible salts by using Laser induced breakdown spectroscopy. New Physics, 67, pp. 1236–1244.