The performance analysis of a Wood-Saxon driven Quantum-Mechanical Carnot Engine

Authors

  • Oladimeji Enock Oluwole Federal University Lokoja, Lokoja, Nigeria
  • Umeh Emmanuel Chukwuebuka Federal University Lokoja, Lokoja, Nigeria
  • Idundun Victory Toritseju Federal University Lokoja, Lokoja, Nigeria
  • Koffa Durojaiye Jude Federal University Lokoja, Lokoja, Nigeria.
  • Obaje Vivian Onechojo Kogi State University, Anyigba, Nigeria.
  • Petinrin Moses Omolayo Fiji National University, Suva, Fiji
  • Adeleke Joshua Toyin Osun State University, Osogbo, Nigeria.

Keywords:

Quantum thermodynamics, Wood-Saxon, Carnot cycle, Quantum heat, engines, finite-engine

Abstract

Communication in Physical Sciences, 2024, 11(3): 501-508

Authors: Oladimeji Enock Oluwole*, Umeh Emmanuel Chukwuebuka, Idundun Victory Toritseju, Koffa Durojaiye Jude, Obaje Vivian Onechojo, Petinrin Moses Omolayo and  Adeleke Joshua Toyin

Received: 16 March 2024/Accepted: 05 June 2024

Classical heat engines (CHEs) have long been employed to convert heat energy into mechanical work through various thermodynamic processes. However, limitations such as friction have driven the exploration of quantum heat engines (QHEs), which operate in the quantum domain and are less susceptible to classical constraints. In this study, we focus on Quantum Heat Engines powered by the Wood-Saxon (WS) oscillator, a model originally developed for nuclear physics but recently applied to quantum systems. Building upon previous work on the efficiency of a WS-powered Carnot engine, we further investigate its performance optimization. We derive expressions for the dimensionless power output and explore the optimization of power output and efficiency. Through mathematical analysis, we determine the optimal parameters for maximum power output, considering the condition for non-negativity of efficiency. The dimensionless power output is found to depend on the efficiency, which varies with the characteristics of the working substance. Our results show that the Wood-Saxon model outperforms the Free Particle model in terms of maximum power efficiency for Quantum Carnot engines. The efficiency at maximum power for the WS-powered engine is 0.739, indicating its superiority over the Free Particle model. This analysis provides insights into the performance characteristics of quantum heat engines and underscores the significance of the choice of working substance in optimizing engine efficiency.

Downloads

Download data is not yet available.

Author Biographies

Oladimeji Enock Oluwole, Federal University Lokoja, Lokoja, Nigeria

Theoretical Physics Group, Department of Physics

Umeh Emmanuel Chukwuebuka, Federal University Lokoja, Lokoja, Nigeria

Theoretical Physics Group, Department of Physics

Idundun Victory Toritseju , Federal University Lokoja, Lokoja, Nigeria

Theoretical Physics Group, Department of Physics

Koffa Durojaiye Jude , Federal University Lokoja, Lokoja, Nigeria.

Theoretical Physics Group, Department of Physics

Obaje Vivian Onechojo , Kogi State University, Anyigba, Nigeria.

Department of Physics

Petinrin Moses Omolayo , Fiji National University, Suva, Fiji

Department of Mechanical Engineering and Renewable Energy

Adeleke Joshua Toyin, Osun State University, Osogbo, Nigeria.

Materials Science Group, Physics Department

References

Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., & Lutz, E. (2012). Single-ion heat engine at maximum power. Physical Review Letters, 109(20). https://doi.org/10.1103/PhysRevLett.109.203006

Abe, S. (2011). Maximum-power quantum-mechanical Carnot engine. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 83(4), 1–3. https://doi.org/10.1103/PhysRevE.83.041117

Alicki, R. (1979). The quantum open system as a model of the heat engine The quantum open system as a model of the heat engine? In J. Phys. A: Math. Gen (Vol. 12, Issue 5). http://iopscience.iop.org/0305-4470/12/5/007

Aytekin, O., Turgut, S., Üstoğlu Ünal, V., Akşahin, E., & Tomak, M. (2013). Nonlinear optical properties of a Woods–Saxon quantum dot under an electric field. Physica E: Low-Dimensional Systems and Nanostructures, 54(2), 257–261. https://doi.org/10.1016/j.physe.2013.06.004

Bender, C. M., Brody, D. C., & Meister, B. K. (2000). Quantum mechanical Carnot engine. Journal of Physics A: Mathematical and General, 33(24), 4427–4436. https://doi.org/10.1088/0305-4470/33/24/302

Campisi, M., Hänggi, P., & Talkner, P. (2011). Erratum: Quantum fluctuation relations: Foundations and applications (Reviews of Modern Physics). In Reviews of Modern Physics (Vol. 83, Issue 3, pp. 771–791). https://doi.org/10.1103/RevModPhys.83.771

Dann, R., & Kosloff, R. (2020). Quantum signatures in the quantum Carnot cycle. New Journal of Physics, 22(1). https://doi.org/10.1088/1367-2630/ab6876

Deffner, S. (2018). Efficiency of harmonic quantum Otto engines at maximal power. Entropy, 20(11). https://doi.org/10.3390/E20110875

Deffner, S., & Lutz, E. (2008). Nonequilibrium work distribution of a quantum harmonic oscillator. Physical Review E, 77(2), 21128. https://doi.org/10.1103/PhysRevE.77.021128

Fei, Z., Chen, J.-F., & Ma, Y.-H. (2022). Efficiency statistics of a quantum Otto cycle. Physical Review A, 105(2). https://doi.org/10.1103/physreva.105.022609

Gelbwaser-Klimovsky, D., Alicki, R., & Kurizki, G. (2013). Minimal universal quantum heat machine. Physical Review E, 87(1), 012140. https://doi.org/10.1103/PhysRevE.87.012140

Gemmer, J., Michel, M., & Mahler, G. (2009). Quantum Thermodynamics. In Gastronomía ecuatoriana y turismo local. (Vol. 784, Issue 69). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-70510-9

Guzmán-Vargas, L., Granados, V., & Mota, R. D. (2002). Efficiency of simple quantum engines: The Joule-Brayton and Otto cycles. AIP Conference Proceedings, 643, 291–296. https://doi.org/10.1063/1.1523819

He, J. Z., He, X., & Zheng, J. (2012). Entangled quantum heat engine based on two-qubit Heisenberg XY model. Chinese Physics B, 21(5), 1–6. https://doi.org/10.1088/1674-1056/21/5/050303

Horchani, R., Al-Shafii, S., Al-Hashimi, N., Ikot, A. N., Okon, I. B., Okorie, U. S., Duque, C. A., & Oladimeji, E. O. E. O. (2022). Bound state solutions and thermal properties of the N-dimensional Schrödinger equation with Varshni plus Woods-Saxon potential via Nikiforov-Uvarov method. Journal of Theoretical and Applied Physics, 16(4), 2022. https://doi.org/10.30495/jtap.162243

Kosloff, R. (2013). Quantum thermodynamics: A dynamical viewpoint. Entropy, 15(6), 2100–2128. https://doi.org/10.3390/e15062100

Kosloff, R., & Rezek, Y. (2017). The Quantum Harmonic Otto Cycle. Entropy, 19(4), 1–36. https://doi.org/10.3390/e19040136

Oladimeji, E. O. (2019). The efficiency of quantum engines using the Pöschl – Teller like oscillator model. Physica E: Low-Dimensional Systems and Nanostructures, 111, 113–117. https://doi.org/10.1016/j.physe.2019.03.002

Oladimeji, E. O., Ibrahim, T. T., Ikot, A. N., Koffa, J. D., Edogbanya, H. O., Umeh, E. C., & Audu, J. (2024). The efficiency of Quantum Mechanical Carnot Engine using the Woods Saxon model. Sule Lamido University Journal of Science & Technology, 9(1&2).

Oladimeji, E. O., Idundun, V. T., Umeh, E. C., Ibrahim, T. T., Edet, C. O., & Ikot, A. N. (2023). The Performance Analysis of a Quantum-Mechanical Carnot-like Engine using Diatomic Molecules.

Oladimeji, E. O., Idundun, V. T., Umeh, E. C., Ibrahim, T. T., Ikot, A. N., Koffa, J. D., & Audu, J. O. (2024). The Performance Analysis of a

Quantum Mechanical Carnot-Like Engine Using Diatomic Molecules. Journal of Low Temperature Physics, 0123456789. https://doi.org/10.1007/s10909-024-03114-0

Oladimeji, E., Owolabi, S., & Adeleke, J. (2021). The Pöschl-Teller like description of Quantum-Mechanical Carnot engine. Chinese Journal of Physics, 70, 151–156. https://doi.org/10.1016/j.cjph.2021.01.004

Peña, F. J., Ferré, M., Orellana, P. A., Rojas, R. G., & Vargas, P. (2016). Optimization of a relativistic quantum mechanical engine. Physical Review E, 94(2), 022109. https://doi.org/10.1103/PhysRevE.94.022109

Peterson, J. P. S., Batalhão, T. B., Herrera, M., Souza, A. M., Sarthour, R. S., Oliveira, I. S., & Serra, R. M. (2019). Experimental Characterization of a Spin Quantum Heat Engine. Physical Review Letters, 123(24). https://doi.org/10.1103/PhysRevLett.123.240601

Vinjanampathy, S., & Anders, J. (2016). Quantum thermodynamics. Contemporary Physics, 57(4), 545–579. https://doi.org/10.1080/00107514.2016.1201896

Von Lindenfels, D., Gräb, O., Schmiegelow, C. T., Kaushal, V., Schulz, J., Mitchison, M. T., Goold, J., Schmidt-Kaler, F., & Poschinger, U. G. (2019). Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. Physical Review Letters, 123(8). https://doi.org/10.1103/PhysRevLett.123.080602

Wang, H., Liu, S., & He, J. (2009). Performance analysis and parametric optimum criteria of an irreversible Bose-Otto engine. Journal of Applied Physics, 105(8). https://doi.org/10.1063/1.3103315

Wang, J., & He, J. (2012). Optimization on a three-level heat engine working with two noninteracting fermions in a one-dimensional box trap. Journal of Applied Physics, 111(4). https://doi.org/10.1063/1.3681295

Wang, J., He, J., & He, X. (2011). Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(4), 041127. https://doi.org/10.1103/PhysRevE.84.041127

Wang, J., He, J., & Mao, Z. (2007). Performance of a quantum heat engine cycle working with harmonic oscillator systems. Science in China Series G: Physics, Mechanics and Astronomy, 50(2), 163–176. https://doi.org/10.1007/s11433-007-0006-1

Wang, J., He, J., & Xin, Y. (2007). Performance analysis of a spin quantum heat engine cycle with internal friction. Physica Scripta, 75(2), 227–234. https://doi.org/10.1088/0031-8949/75/2/018

Wang, R., Wang, J., He, J., & Ma, Y. (2012). Performance of a multilevel quantum heat engine of an ideal N -particle Fermi system. Physical Review E, 86(2), 021133. https://doi.org/10.1103/PhysRevE.86.021133

Woods, R. D., & Saxon, D. S. (1954). Diffuse Surface Optical Model for Nucleon-Nuclei Scattering. Physical Review, 95(2), 577–578. https://doi.org/10.1103/PhysRev.95.577

Downloads

Published

2024-06-15