Thermal Properties of Diffusing Species into Some Host Metals
DOI:
https://doi.org/10.4314/detsf785Keywords:
Spherical coordinate, host metals, partition function, Frobenius methodAbstract
The study rigorously explored the thermodynamic properties of diffusing species by solving the spherical coordinate equation using the Frobenius method. This mathematical approach enabled the derivation of the partition function and energy equation, which were crucial in determining key thermal properties, including Helmholtz free energy, entropy, internal energy, and heat capacity. It was observed that internal energy and entropy exhibited a strong dependence on temperature, reflecting the dynamic nature of diffusing species in varying thermal environments. The findings provide valuable insights into the behavior of entropy within the classical domain, with both analytical expressions and graphical representations used to illustrate these thermal properties comprehensively. The graphical analysis highlighted the temperature-dependent trends and the critical points where classical and quantum mechanical effects influence the thermodynamic behavior of the system, offering a deeper understanding of the underlying physics.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Akaezue Nelson Nwagbogwu, Ngiangia Alalibor Thompson, Onyeaju Michael Chukwudi, Thermal Properties of Diffusing Species into Some Host Metals , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
Similar Articles
- Samuel Awolumate, Aderonke Nana Agbo, Nutrient Retention and Feed Utilization Efficiency in Clarias gariepinus: The Role of Lysine and Methionine in Enhancing Protein Deposition and Reducing Nitrogen Waste , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Onanuga Omotayo Aina, Titus Morrawa Ryaghan, Bello Musa Opeyemi, Momoh Daniel Clement, Goat Horn Biochar as a Low-Cost Adsorbent for the Removal of Cadmium and Zinc ions in Aqueous Solution , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3
- Aniekan Udongwo, Monitoring, Assessment, and Remediation of Heavy Metal Contamination: Techniques, Strategies, and Policy Frameworks , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3
- Richard Alexis Ukpe, Synthesis and Characterization of Calcium Oxide Nanoparticles (CaO-NPs) from Waste Oyster Shells , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3
- Ola-Buraimo A. Olatunji , Musa Rukaya, Granulometric and Petrographic Assessment of the Textural, Minerological and Paleoenvironment of Deposition of Gulma Sandstone Member, Gwandu Formation, Sokoto Basin, Northwestern Nigeria , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Ajogwu Cordelia Odinaka, Aaron Auduson, Tope Alege, Yusuf Odunsanwo, Formation Evaluation Using Integrated Petrophysical Data Analysis of Maboro Field Niger Delta Sedimentary Basin, Nigeria , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Usman Mohammed Ibrahim, Agada Livinus Emeka, Impacts of Climate Change on Groundwater Resources in a Semi-Arid Region: A Case Study of Damaturu, Yobe State , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Yakubu Azeh, Spectroscopic Characterization of Acetylated Wood Flakes and Its High-Density Polyethylene Blends , Communication In Physical Sciences: Vol. 8 No. 1 (2022): VOLUME 8 ISSUE 1
- Uba Sani, Abdulkadir Ibrahim, Akande, Esther Oluwatoyosi, John, Oghenetega Mercy, Murtala, Mohammed Rumah, Assessment of Surface Water Quality in Zaria Metropolis: Implications for Environmental Health and Sustainable Management , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Kolawole Ismail Adekunle, Abubakar Yahaya, Sani Ibrahim Doguwa, Aliyu Yakubu, On the Exponentiated Type II Generalized Topp-Leone-G Family of Distribution: Properties and Applications , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
You may also start an advanced similarity search for this article.