Load-Bearing Capacity Analysis and Optimization of Beams, Slabs, and Columns
Keywords:
Load-bearing capacity, structural optimization, beams, columns, regression analysisAbstract
This study investigates the load-bearing capacity and optimization of structural elements—beams, slabs, and columns—using quantitative modeling and analysis based on material type, geometric dimensions, applied load, and safety factors. A dataset comprising ten structural elements was analyzed, with load-bearing capacities ranging from 7,130.9 kN to 113,169.6 kN and utilization ratios between 0.01 and 0.06 in the original configurations. Correlation analysis revealed that volume (r = 0.98), length (r = 0.59), and width (r = 0.37) had strong to moderate positive relationships with load-bearing capacity, while utilization ratio showed a strong inverse correlation (r = -0.52). A linear regression model demonstrated that width (β = 72,951.73), depth (β = 58,328.83), and strength (β = 989.31) had the most significant positive contributions to capacity, while safety factor (β = -10,689.44) had a substantial negative effect. Optimization results showed that structural elements designed with composite and steel materials, and optimized dimensions (e.g., 1.20 m width, 1.10 m depth for composite beams), achieved load-bearing capacities up to 30,500 kN with utilization ratios increased to as high as 0.90, and safety factors maintained within the range of 1.40 to 2.00. The study concludes that data-driven optimization significantly improves structural efficiency, capacity utilization, and material performance.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Oluwafemi Samson Afolabi , Oluwafemi Samson Afolabi , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
Similar Articles
- Habu Tela Abba, Miftahu Gambo Idris, Jibrin Suleiman Yaro, Mapping of Terrestrial Radioactivity Levels in Surface Soil. A Case Study of Damaturu L.G.A, Yobe State, Nigeria. , Communication In Physical Sciences: Vol. 4 No. 2 (2019): VOLUME 4 ISSUE 2
- Promise. A. Azor, Amadi Ugwulo Chinyere, Mathematical Modelling of an Investor’s Wealth with Different Stochastic Volatility Models , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Uzoma Nwokoma Esomchi, Performance of Generated Models with Statistical Tools for Estimation of Solar Radiation in Umudike, Abia State, Nigeria , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Ivwurie Wisdom, Gabriel Akindeju, Assessment of Polycyclic Aromatic Hydrocarbons in Soils from Selected Areas in Agbarho Communities, Delta State, Nigeria , Communication In Physical Sciences: Vol. 8 No. 2 (2022): VOLUME 8 ISSUE 2
- Joseph Amajama, Ahmed Tunde Ibrahim, Julius Ushie Akwagiobe, Atmospheric Humidity Impact on the Strength of Mobile Phone Communication Signal , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Anduang Ofuo Odiongenyi, Removal of Ethyl Violet Dye from Aqueous Solution by Graphite Dust and Nano Graphene Oxide Synthesized from Graphite Dust , Communication In Physical Sciences: Vol. 4 No. 2 (2019): VOLUME 4 ISSUE 2
- Obonin, Samuel Sabastine, Amadi, Ugwulo Chinyere, Sylvanus, Kupongoh Samaila, The Effects of External Toxicants on Competitive Environment: A Mathematical Modeling Approach , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Oyakojo Emmanuel Oladipupo, Abdulahi Opejin, Jerome Nenger, Ololade Sophiat Alaran, Coastal Hazard Risk Assessment in a Changing Climate: A Review of Predictive Models and Emerging Technologies , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
- N. B. Essien, Sorghum Waste as an Efficient Adsorbent for the Removal of Zn2+and Cu2+ from Aqueous Medium , Communication In Physical Sciences: Vol. 5 No. 2 (2020): VOLUME 5 ISSUE 2
- Hassan Abdulsalam, Dr Fatima Musa Lariski, Effect of Cerium on the Dielectric and structural Properties of Barium Titanate-based ceramics for multilayer ceramic capacitors , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
You may also start an advanced similarity search for this article.



