Derivation of a New Odd Exponential-Weibull Distribution

Authors

  • Musa Ndamadu Farouq Kaduna Polytechnic, Kaduna State, Nigeria
  • Nwaze Obini Nweze Nasarawa State University Keffi, Nigeria
  • Monday Osagie Adenomon Nasarawa State University Keffi, Nigeria
  • Mary Unekwu Adehi Nasarawa State University Keffi, Nigeria

Keywords:

Odd-Exponential-G, Weibull, Quantile function, survival function, Maximum likelihood, Order Statistics

Abstract

Communication in Physical Sciences, 2024, 11(4): 838-851

Authors: Musa Ndamadu Farouq*, Nwaze Obini Nweze, Monday Osagie Adenomon and Mary Unekwu Adehi

Received: 12 June 2024/Accepted: 12 September 2024

The study of statistical distributions has led to the development of numerous extensions of well-known continuous distributions to enhance their flexibility and applicability across various fields. In this paper, we introduce a new three-parameter distribution known as the Odd Exponential-Weibull (OE-W) distribution, which extends the traditional Weibull distribution by incorporating  additional parameter. We thoroughly investigate the mathematical properties of the OE-W distribution, deriving explicit formulas for the quantile function, moments, moment-generating function, survival function, hazard function, entropy, and order statistics. Parameter estimation is conducted using the maximum likelihood estimation (MLE) method, which is known for its robustness. To assess the reliability and accuracy of these parameter estimates, a Monte Carlo simulation study is performed. The simulation results indicate that the MLE method consistently yields reliable and accurate estimates for the parameters of the OE-W distribution. The introduction of this new distribution provides a valuable tool for modeling and analyzing data in fields such as reliability engineering and survival analysis, where flexible and accurate probability distributions are crucial.

Downloads

Download data is not yet available.

Author Biographies

Musa Ndamadu Farouq, Kaduna Polytechnic, Kaduna State, Nigeria

Department of Mathematics and  Statistics

Nwaze Obini Nweze, Nasarawa State University Keffi, Nigeria

Department of Statistics

Monday Osagie Adenomon, Nasarawa State University Keffi, Nigeria

Department of Statistics

Mary Unekwu Adehi, Nasarawa State University Keffi, Nigeria

Department of Statistics,

References

Afify, A. Z., Nofal, Z. M., & Butt, N. S. (2014). Transmuted complementary Weibull geometric distribution. Pak J Stat Oper Res; 10: pp. 435-454.

Afify, A. Z., Cordeiro, G. M., Butt, N. S., Ortega, E. M. M., & Suzuki, A. K. (2017). A new lifetime model with variable shapes for the hazard rate. Braz J Probab Stat; 31pp. 516-541.

Afify, A. Z., Cordeiro, G. M., Yousof. H. M., Abdus, S., & Ortega, E.M.M. (2018). The Marshall-Olkin additive Weibull distribution with variable shapes for the hazard rate. Hacettepe J Math Stat; 47: pp.-381.

Ahmad, Z. (2018). The Zubair-G family of distributions: properties and applications. Annals of Data Science, 5, pp. 1–14.

Ahmad, Z., Elgarhy, M., & Abbas, N. (2019). A new extended alpha power transformed family of distributions: properties and applications. Journal of Statistical Modelling: theory and Applications, 1, 1, pp. 13–28.

Ahmad, Z., Ilyas, M., & Hamedani, G. G. (2019) . The extended alpha power transformed family of distributions: properties and applications. Journal of Data Science, 17, 4, pp. 726–741.

Akanji, B. O., Doguwa, S. I., Abubakar, Y., & Mohammed, J. H. (2023). The properties of Type II Half-Logistic Exponentiated Weibull Distribution with Applications. UMYU Scientifica, 2, 1, pp. 39-52.

Aryal, G. R., & Tsokos, C. P. (2011). Transmuted Weibull distribution: a generalization of the Weibull probability distribution. Eur J Pure Appl Math, 4, pp. 89-102.

Aryal, G. R., Ortega, E. M. M., Hamedani, G. G., & Yousof, H.M. (2017). The Topp-Leone generated Weibull distribution: regression model, characterizations and applications. Int J Stat Probab; 6, 1, pp. 126-141.

Bebbington, M., Lai, C. D., & Zitikis, R. (2007). A flexible Weibull extension. Reliability Engineering & System Safety, 92, 6, pp. 719–726.

Bello, O. A., Doguwa, S. I., Yahaya, A., & Jibril, H. M. (2023). A Type I Half-Logistic Exponentiated Weibull Distribution: Properties and Applications. Reliability: Theory & Applications, 18, 3, 74, pp. 218-233.

Bourguignon, M., Silva, R. B., & Cordeiro, G. M. (2014). The Weibull-G family of probability distributions. Journal of data science, 12(1), 53-68.

Codeiro, G. M., Hashimoto, E. M., & Ortega, E. M. M. (2014). The McDonald Weibull model. J Theor Appl Stat; 48, pp. 256-278.

Cordeiro, G. M, Ortega, E. M. M., & Nadarajah, S. (2010) The Kumaraswamy Weibull distribution with application to failure data. J Franklin Inst, 347, pp. 1399-1429.

Cordeiro, G. M., Ortega, E. M. M., & Silva, G. O. (2014). The Kumaraswamy modified Weibull distribution: theory and applications. J Stat Comput Simul; 84, pp.1387-1411.

Cordeiro, G. M., Ortega, E.M.M., & Da Cunha D.C.C. (2013). The exponentiated generalized class of distributions. J Data Sc., 11, 1, pp. 1-27, https://doi.org/10.6339/JDS.2013.11(1).1086

Elbatal, I., & Aryal, G. (2013). On the transmuted additive Weibull distribution. Austrian J Stat; 42, pp. 117-132.

Hanook, S., Shahbaaz, M. Q., Mohsin, M., & KIBRIA, G. (2013). A Note on Beta Inverse Weibull Distribution. Commun Stat Theory Methods; 42, pp. 320-335.

Ibrahim, S. (2021). The properties of Topp Leone exponentiated weibull distribution with application to survival data. Research Journal of Mathematical and Statistical Sciences, 9, 1, pp. 9-15.

Lai, C. D., Xie, M., & Murthy, D. N. P. (2003) . A modified Weibull distribution. IEEE Transactions on Reliability, 52, 1, pp. 33–37.

Lee, E. T. & Wang, J. W. (2003). Statistical methods for survival data analysis (3rd Edition), John Wiley and Sons, New York, USA, , ISBN 0-471-36997-7.

Merovci, F., & Elbatal, I. (2013). The McDonald modified Weibull distribution: properties and applications. arXiv preprint arXiv:13092961. (In Press).

Mudholkar, G. S., Srivastava, D. K., & Kollia, G.D. (1996). A generalization of the Weibull distribution with application to the analysis of survival data. Journal of the American Statistical Association, 91, pp.1575-1583.

Nofal, Z. M., Afify, A. Z., Yousof, H. M., & Cordeiro, G. M. (2017). The generalized transmuted-G family of distributions. Commun Stat Theory Methods; 46, pp. 4119-4136.

Nofal, Z. M., Afify, A.Z., Yousof, H.M., Granzotto, D.C.T., & Louzada, F. (2016). Kumaraswamy transmuted exponentiated additive Weibull distribution. Int J Stat Probab; 5, pp. 78-99.

Sadiq, I. A., Doguwa, S. I. S., Yahaya, A., & Usman, A. (2023). Development of New Generalized Odd Frechet-Exponentiated-G Family of Distribution. UMYU Scientifica, 2, 4, pp. 169-178.

Shahbaz, M. G, Shahbaz, S., & Butt, N. M.(2012). The Kumaraswamy inverse Weibull distribution. Pak J Stat Oper, 8, pp. 479-489.

Silva, G. O., Ortega, E. M. M., and Cordeiro, G. M. (2010). The beta modified Weibull distribution. Lifetime Data Analysis, 16, 3, pp. 409–430.

Xie, M., Tang, Y., & Goh, T. N. (2002). A modified Weibull extension with bathtub-shaped failure rate function. Reliability Engineering & System Safety, 76, 3, pp. , 1, pp. 279–285.

Zhang, T. & Xie, M. (2011). On the upper truncated Weibull distribution and its reliability implications. Reliability Engineering & System Safety, 96(, 1, pp. 194–200.

Downloads

Published

2024-09-19