Resource Recovery from Maize Biomass for the Synthesis of SiO2 Nanoparticles and Crystallographic Analysis for Possible Applications
DOI:
https://doi.org/10.4314/g5m5q009Keywords:
Crystallographic and amorphous characters, silicon oxide nanoparticles, XRD profiles, analysis, applicationsAbstract
This study demonstrates the successful recovery of silicon dioxide (SiO₂) nanoparticles from maize biomass, highlighting their structural characteristics and environmental implications. Maize waste samples ere obtained as the stocks of the plants after harvesting and employed as precursors for the synthesis of SiO2 nanoparticles using the sol gel method. The produced nanoparticles were analysed for their crystalline properties using XRD machine. The X-ray diffraction (XRD) analysis indicated some structural features, including deviations in diffraction angles (2θ) from standard Quartz (SiO₂), ranging from -0.01° to +0.14°. At 30.28°, a positive deviation of +0.14° indicated lattice contraction, while a negative deviation of -0.01° at 41.80° suggested lattice expansion. These shifts reflect lattice strain, defects, and quantum confinement effects at the nanoscale. Calculated d-spacing values, derived using Bragg’s equation, further emphasized these structural alterations, with deviations ranging from -0.12 Å to +0.01 Å. Notably, d-spacing at 30.28° (2.95 Å) showed compression by -0.12 Å compared to the reference value (3.35 Å), while at 41.80° (2.16 Å), a slight expansion of +0.01 Å was observed. Phase analysis confirmed the crystalline SiO₂ structure, with close alignment to standard Quartz (JCPDS Card Number 46-1045). The lattice parameters, calculated as a = 8.07 Å and c = 3.83 Å, showed minimal deviation from standard Quartz values (a = 8.14 Å and c = 3.83 Å), with a minor contraction of -0.7 Å for lattice constant a. Texture coefficient (TC) analysis revealed preferential crystallographic orientations, with high TC values at 30.28° (1.1176) and 35.20° (1.0649), indicating enhanced electrical conductivity and surface reactivity along these planes. Conversely, weaker diffraction at 20.24° (TC = 0.5098) reflected structural imperfections and non-uniform alignment. The structural features observed in the synthesized SiO₂ nanoparticles underscore their suitability for diverse applications. High surface reactivity, arising from nanoscale effects and lattice strain, supports their use in environmental remediation, such as water purification and heavy metal adsorption. The preferential crystallographic orientations enhance catalytic activity, while the structural integrity and stability ensure effectiveness in soil stabilization and nutrient delivery in agriculture. Additionally, the nanoparticles exhibit potential for incorporation into optoelectronic devices and green construction materials, improving functionality and sustainability. The untilization of maize biomass in this study reveals a sustainable method for SiO₂ nanoparticle synthesis and also addresses environmental concerns by valorizing agricultural waste. The results emphasize the need to control synthesis parameters to optimize properties for targeted applications, presenting a significant step toward sustainable nanotechnology solutions with positive environmental impacts.
Most read articles by the same author(s)
- Aniekan Udongwo, https://dx.doi.org/10.4314/cps.v12i2.17 , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
Similar Articles
- U. Aletan, Comparison of the Proximate and Mineral Composition of two Cowpea Varieties obtained from Mile 12 Market, Lagos , Communication In Physical Sciences: Vol. 3 No. 1 (2018): VOLUME 3 ISSUE 1
- Humphrey Sam Samuel, Ugo Nweke-Maraizu, Gani Johnson, Emmaneul Etim Etim, A Review of Theoretical Techniques in Corrosion Inhibition Studies , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Pius Onyeoziri Ukoha, Uchechukwu Ruth Obeta , Reduction of the Adipato-Bridged Binuclear Iron(III) Complex, [(Fesalen)2adi] by Thioglycolic Acid: Kinetic and Mechanistic Study , Communication In Physical Sciences: Vol. 3 No. 1 (2018): VOLUME 3 ISSUE 1
- P. O. Ameh, N. O. Eddy, Theoretical and Experimental Investigations of the Corrosion Inhibition Action of Piliostigma Thonningii Extract on Mild Steel in Acidic Medium , Communication In Physical Sciences: Vol. 3 No. 1 (2018): VOLUME 3 ISSUE 1
- Olawale Babatunde Olatinsu, Segun Opeyemi Olawusi, Mathew Osaretin Ogieva, Electrical Resistivity Characterization of Peat and Clay Profiles at a Suburb of Ota, Southwest Nigeria , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Kingsley Ochommadu Kelechi , Onwubuariri Nnamdi Chukwuebuka, Chiazor Faustina Jisieike, Ezere, Uchechi Ahunna, Muyiwa Michael Orosun, Chisom Loveth Kelechi, Health Risk Assessment of Heavy Metal Contamination in Water Sources at Michael Okpara University of Agriculture , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Kelechi K. Ochommadu, Nwamaka I. Akpu, Okhuomaruyi D. Osahon, Comparative Evaluation of Bone and Some Materials Used as Bone Tissue Substitutes in Radiotherapy and Radiological Applications , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- YUSUF MOHAMMED AUWAL, OSITA CHUKWUDI MELUDU, TIMTERE PASCAL, Computational Modeling and validation of Indoor Radon Gas Dynamics and Accumulation Using Ansys Fluent Simulation , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Emmanuel John Ekpenyong, Evaluating The Performances of Estimators of Population Mean Weight of Babies in FMC, Imo State Under Simple Random Sampling Scheme , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Ifeanyi E. Otuokere, J. C. Anyanwu, K. K. Igwe, Ni(II) Complex of a Novel Schiff Base Derived from Benzaldehyde and Sulphathiazole: Synthesis, Characterization and Antibacterial Studies , Communication In Physical Sciences: Vol. 5 No. 2 (2020): VOLUME 5 ISSUE 2
You may also start an advanced similarity search for this article.