Investigation of Frequency-dependent Conductivity Signatures of Geological Materials from Ewekoro, Eastern Dahomey Basin
DOI:
https://doi.org/10.4314/d57xpj02Keywords:
Dielectric measurement; electrical properties; frequency dependent conductivity; geological materials; eastern Dahomey BasinAbstract
Frequency-dependent conductivity measurements can be used to study the electrical behaviour of rocks for rock typing and petrophysical evaluation. In this study, frequency-dependent conductivity was computed from dielectric measurements under ambient conditions on dry, humidified/hydrated and saturated samples of limestone, sandstone, shale and glauconite from Ewekoro within the eastern Dahomey Basin. The frequency of the applied field was varied from 40 Hz to 110 MHz using a precision impedance analyzer (Agilent 4294) and a test/measurement probe specially fabricated for parallel plate measurement. Geochemical analysis was also conducted on pieces obtained from the geological materials during sample preparation. Siliclastic sandstone and shale have similar SiO2 and Al2O3 concentrations but shale samples have slightly higher concentrations of Fe2O3 and TiO2. Limestone and glauconite also share similar CaO concentrations but in SiO2 concentration. All the geological types show dispersion of conductivity in dry, partial-water saturation as well as full-water saturation. However, the frequency range of this dispersion varies depending on the type of material and is somehow influenced by the saturation level. Except for magnitudes, the conductivity changes with frequency for both dry and partially water-saturated rocks are comparable. The electrical properties of the rocks rise as a result of greater polarization that takes place after partial saturation. As a result, the hydrated samples have slightly higher conductivity values. Due to the presence of mobile ions in the conduction process, polarization is further strengthened and the liquid's overall effect gives higher conductivity values under complete saturation. Compared to both dry and hydrated samples, the conductivity values for fully saturated samples are at least one order of magnitude higher. The conductivity of shale and glauconite is found to be a significant order of magnitude higher than that of limestone and sandstone, regardless of whether the rocks are dry or saturated, according to frequency-dependent properties. This behaviour is partially explained by the clay-like conductive (charge particle) properties of glauconite and shale. Additionally, at very high frequencies, sample-electrode effects have relatively little effect on conductivity across the measurement frequency range. These discernible variations in electrical characteristics can serve as robust tool for classifying different types of rocks and in petrophysical analyses.
Downloads
Published
Issue
Section
Similar Articles
- Olawale Babatunde Olatinsu, Segun Opeyemi Olawusi, Mathew Osaretin Ogieva, Electrical Resistivity Characterization of Peat and Clay Profiles at a Suburb of Ota, Southwest Nigeria , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Joseph Jacob, Paul Andrew P. Mamza, Mechanism of Water Absorption Behaviour in Groundnut Shell Powder Filled Waste HDPE Composites , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- Itoro Esiet Udo, Imaobong Daniel Ekwere, Idongesit Bassey Anweting, Beneficiation Process of Locally Available Bentonitic Clay: An Efficient Utilization in Drilling Fluid Application in Akwa Ibom State , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- S. Takuma, Assessment of changes in plasticity and mechanical properties of polystyrene fatty acid-based neem seed oil blends , Communication In Physical Sciences: Vol. 4 No. 1 (2019): VOLUME 4 ISSUE 1
- Musa Runde, M. H. Shagal, Y. Abba, Production and Purification of Biogas Generated by Co-digestion of Cow Dung and Kitchen Waste , Communication In Physical Sciences: Vol. 5 No. 4 (2020): VOLUME 5 ISSUE 4
- S. A. Odoemelam, Investigation of Adsorption of Tetraoxosulphate (I) ions by Some Agricultural Soils in Akwa Ibom State, South-South igeria , Communication In Physical Sciences: Vol. 5 No. 2 (2020): VOLUME 5 ISSUE 2
- Jibril Yahaya Kajuru, Hussaini Garba Dikko, Aminu Suleiman Mohammed, Aliyu Ibrahim Fulatan, Generalized Odd Gompertz-G Family of Distributions: Statistical Properties and Applications , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Mu’awiya Baba Aminu, Hareyani Zabidi, Juliet Ngozi Chijioke-Churuba, Saleh Mamman Abdullahi, Kolapo Fasina, Aliyu Abubakar, Muhammad Nurudeen Mashin, Abdulmalik Nana Fatima, Bertha Onyenachi Akagbue, Olusola Kolawole Ogunmilua, Environmental and Public Health Challenges of Phases Towards Cement Production, Remediation Monitoring and Evaluation Strategies , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Elizabeth Chinyere Nwakorongwu, Patricia Uchechi. Kanayochi-Okpechi, Ugochukwu Joseph, Effects of Annealing Temperature on the Dual Solution Synthesis and Optical Characterization of AlS: ZnS Thin Films , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- Yakubu Azeh, Spectroscopic Characterization of Acetylated Wood Flakes and Its High-Density Polyethylene Blends , Communication In Physical Sciences: Vol. 8 No. 1 (2022): VOLUME 8 ISSUE 1
You may also start an advanced similarity search for this article.