Leveraging Machine Learning for Predictive Analytics in Mergers and Acquisitions: Valuation, Risk Assessment, and Post-Merger Performance
Keywords:
Machine Learning, Mergers and Acquisitions, XGBoost, SHAP Values, Predictive Analytics, Deal ValuationAbstract
This study investigates machine learning (ML) applications to enhance predictive accuracy across three critical M&A dimensions: valuation, risk assessment, and post-merger performance. Using 8,347 U.S. transactions from 2005–2022, we compare Random Forest, XGBoost, Neural Networks, and Support Vector Machines against traditional regression methods. XGBoost achieves 62% higher R2 than OLS for premium prediction (0.676 vs. 0.415), 87.2% accuracy for deal completion (vs. 73.1% for logistic regression), and substantially outperforms analyst estimates for post-merger returns. SHAP value analysis reveals that deal structure features relative size, payment method, tender offers dominate traditional financial metrics. Trading strategies based on ML predictions generate 11.8% annual returns with Sharpe ratio 0.825, demonstrating economic significance. Our findings show that ML captures non-linear relationships invisible to traditional models, providing actionable insights for practitioners while advancing computational corporate finance theory.
Downloads
Published
Issue
Section
Similar Articles
- Nsikan Ime Obot, Okwisilieze Uwadoka, Oluwasegun Israel Ayayi, Modelling Nonseasonal Daily Clearness Index for Solar Energy Estimation in Ilorin, Nigeria Using Support Vector Regression , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Humphrey Sam Samuel, Emmanuel Edet Etim, John Paul Shinggu, Bulus. Bako , Machine learning of Rotational spectra analysis in interstellar medium , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Dahunsi Samuel Adeyemi, Effectiveness of Machine Learning Models in Intrusion Detection Systems: A Systematic Review , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Nsikan Ime Obot, Busola Olugbon, Ibifubara Humprey, Ridwanulahi Abidemi Akeem, Equatorial All-Sky Downward Longwave Radiation Modelling , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- Emmanuel Oluwemimo Falodun, Faith, Technology, and Safety: A Theoretical Framework for Religious Leaders Using Artificial Intelligence to Advocate for Gun Violence Prevention , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Joy Nnenna Okolo, A Review of Machine and Deep Learning Approaches for Enhancing Cybersecurity and Privacy in the Internet of Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Ademilola Olowofela Adeleye, Oluwafemi Clement Adeusi, Aminath Bolaji Bello, Israel Ayooluwa Agbo-Adediran, Intelligent Machine Learning Approaches for Data-Driven Cybersecurity and Advanced Protection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Olaleye Ibiyeye, Joy Nnenna Okolo, Samuel Adetayo Adeniji, A Comprehensive Evaluation of AI-Driven Data Science Models in Cybersecurity: Covering Intrusion Detection, Threat Analysis, Intelligent Automation, and Adaptive Decision-Making Systems , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Florence Omada Ocheme, Hakeem Adewale Sulaimon, Adamu Abubakar Isah, A Deep Neural Network Approach for Cancer Types Classification Using Gene Selection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Franklin Akwasi Adjei, Artificial Intelligence and Machine Learning in Environmental Health Science: A Review of Emerging Applications , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
You may also start an advanced similarity search for this article.



