Leveraging Machine Learning for Predictive Analytics in Mergers and Acquisitions: Valuation, Risk Assessment, and Post-Merger Performance
Keywords:
Machine Learning, Mergers and Acquisitions, XGBoost, SHAP Values, Predictive Analytics, Deal ValuationAbstract
This study investigates machine learning (ML) applications to enhance predictive accuracy across three critical M&A dimensions: valuation, risk assessment, and post-merger performance. Using 8,347 U.S. transactions from 2005–2022, we compare Random Forest, XGBoost, Neural Networks, and Support Vector Machines against traditional regression methods. XGBoost achieves 62% higher R2 than OLS for premium prediction (0.676 vs. 0.415), 87.2% accuracy for deal completion (vs. 73.1% for logistic regression), and substantially outperforms analyst estimates for post-merger returns. SHAP value analysis reveals that deal structure features relative size, payment method, tender offers dominate traditional financial metrics. Trading strategies based on ML predictions generate 11.8% annual returns with Sharpe ratio 0.825, demonstrating economic significance. Our findings show that ML captures non-linear relationships invisible to traditional models, providing actionable insights for practitioners while advancing computational corporate finance theory.
Downloads
Published
Issue
Section
Similar Articles
- Ifeoma Chikamma Okereke , Peace Nwagor, Chidinma Olunkwa, Amadi Innocent Uchenna, Analytical Solution on Stochastic Systems to Assess the Wealth Function of Periodic Corporate Investors , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Aniekan Udongwo, Oluwafisayomi Folorunso, Resource Recovery from Maize Biomass for the Synthesis of SiO2 Nanoparticles and Crystallographic Analysis for Possible Applications , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Florence Omada Ocheme, Hakeem Adewale Sulaimon, Adamu Abubakar Isah, A Deep Neural Network Approach for Cancer Types Classification Using Gene Selection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Simbiat Atinuke Lawal, Samuel Omefe, Adeseun Kafayat Balogun, Comfort Michael, Sakiru Folarin Bello, Itunu Taiwo Owen, Kevin Nnaemeka Ifiora, Circular Supply Chains in the Al Era with Renewable Energy Integration and Smart Transport Networks , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Chukwuemeka. K. Onwuamaeze, Christopher. I. Ejiofor, An Improved Defragmentation Model for Distributed Customer’s Bank Transactions , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- Michael Oladipo Akinsanya, Oluwafemi Clement Adeusi, Kazeem Bamidele Ajanaku, A Detailed Review of Contemporary Cyber/Network Security Approaches and Emerging Challenges , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Bala Yakubu Alhaji, Physical And Mechanical Properties of Composite and Pure Briquettes Produced from Rice Husk, Groundnut Shell and Palm Kernel Shell Using Cassava Starch , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Robinson Ogochukwu , Comprehensive Review of Artificial Intelligence Contributions to Understanding Music, Religion, and Influencing Future and Emerging Global Trends Robinson Ogochukwu Isichei , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Precious Ogechi Ufomba, Ogochukwu Susan Ndibe, IoT and Network Security: Researching Network Intrusion and Security Challenges in Smart Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Bayode Adeyanju, Development and Application of a Novel Bi-functional Heat Treatment Furnace: A Review , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
You may also start an advanced similarity search for this article.



