Leveraging Machine Learning for Predictive Analytics in Mergers and Acquisitions: Valuation, Risk Assessment, and Post-Merger Performance
Keywords:
Machine Learning, Mergers and Acquisitions, XGBoost, SHAP Values, Predictive Analytics, Deal ValuationAbstract
This study investigates machine learning (ML) applications to enhance predictive accuracy across three critical M&A dimensions: valuation, risk assessment, and post-merger performance. Using 8,347 U.S. transactions from 2005–2022, we compare Random Forest, XGBoost, Neural Networks, and Support Vector Machines against traditional regression methods. XGBoost achieves 62% higher R2 than OLS for premium prediction (0.676 vs. 0.415), 87.2% accuracy for deal completion (vs. 73.1% for logistic regression), and substantially outperforms analyst estimates for post-merger returns. SHAP value analysis reveals that deal structure features relative size, payment method, tender offers dominate traditional financial metrics. Trading strategies based on ML predictions generate 11.8% annual returns with Sharpe ratio 0.825, demonstrating economic significance. Our findings show that ML captures non-linear relationships invisible to traditional models, providing actionable insights for practitioners while advancing computational corporate finance theory.
Downloads
Published
Issue
Section
Similar Articles
- Bayode Adeyanju, Development and Application of a Novel Bi-functional Heat Treatment Furnace: A Review , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- David Adetunji Ademilua, Advances and Emerging Trends in Cloud Computing: A Comprehensive Review of Technologies, Architectures, and Applications , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
- Simbiat Atinuke Lawal, Samuel Omefe, Adeseun Kafayat Balogun, Comfort Michael, Sakiru Folarin Bello, Itunu Taiwo Owen, Kevin Nnaemeka Ifiora, Circular Supply Chains in the Al Era with Renewable Energy Integration and Smart Transport Networks , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Chukwuemeka. K. Onwuamaeze, Christopher. I. Ejiofor, An Improved Defragmentation Model for Distributed Customer’s Bank Transactions , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- Michael Oladipo Akinsanya, Oluwafemi Clement Adeusi, Kazeem Bamidele Ajanaku, A Detailed Review of Contemporary Cyber/Network Security Approaches and Emerging Challenges , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Vincent Oseikhuemen Odia-Oseghale, Joseph Odion Odia-Oseghale, Environmental Implications of Quarrying and Waste Management: A Case Study of Okhoro, Benin City , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Ola-Buraimo A. Olatunji , Musa Rukaya, Granulometric and Petrographic Assessment of the Textural, Minerological and Paleoenvironment of Deposition of Gulma Sandstone Member, Gwandu Formation, Sokoto Basin, Northwestern Nigeria , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Esharive Ogaga, Onimisi Martins, Abdulateef Onimisi Jimoh, Akudo Ernest orji, Aigbadon Godwin Okumagbe, Achegbulu Ojonimi Emmanuel, Assessment of Geotechnical Attributes of Laterites as Sub-base and Sub-Grade Materials in Parts of Northern Anambra Basin Nigeria: Implications for Road Pavement Construction , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- David Adetunji Ademilua, Edoise Areghan, AI-Driven Cloud Security Frameworks: Techniques, Challenges, and Lessons from Case Studies , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- M. M. Ndamitso, M. Musah, J. T. Mathew, V. T. Bissala, Comparative Nutritional Analysis of Daddawa Made from Fermented Parkia biglobosa and Glycine max Seeds , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
You may also start an advanced similarity search for this article.



