Development of an Enhanced Predictive Maintenance Models for Industrial Systems using Deep Learning Techniques
Keywords:
Predictive Maintenance, Deep Learning, Long Short-Term Memory (LSTM), Multilayer Perceptron (MLP), Industrial Systems.Abstract
Predictive maintenance has become essential in modern industrial systems for reducing unplanned downtime, lowering maintenance costs, and improving equipment reliability. This study presents a hybrid deep learning framework that combines Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) networks for accurate machine failure prediction. The model was trained using multivariate sensor data, including air temperature, process temperature, rotational speed, torque, and tool wear, enabling comprehensive monitoring of machine health. The hybrid architecture integrates LSTM’s strength in temporal sequence learning with MLP’s capability for nonlinear feature-based classification. Training results showed a steady reduction in loss and convergence in accuracy over 30 epochs, with the model achieving a training accuracy of 98.10%. During testing, the hybrid model achieved an overall prediction accuracy of 99.20%, outperforming standalone LSTM and MLP models. The system effectively detected multiple failure modes, including power failure, overstrain failure, and heat dissipation failure, while maintaining strong performance in distinguishing normal operating conditions. To demonstrate real-world applicability, the model was deployed via a Streamlit-based web interface for real-time monitoring and prediction. An integrated automated email alert system provided immediate notifications when potential failures were detected, supporting proactive maintenance decisions. Although minor performance variation was observed for less frequent failure categories due to class imbalance, the overall results confirm the robustness and scalability of the proposed framework. The findings highlight the significant potential of hybrid deep learning models in transforming maintenance strategies from preventive to data-driven predictive approaches, ultimately enhancing operational efficiency and system longevity in industrial environments.
Similar Articles
- Florence Omada Ocheme, Hakeem Adewale Sulaimon, Adamu Abubakar Isah, A Deep Neural Network Approach for Cancer Types Classification Using Gene Selection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Ayomide Ayomikun Ajiboye, Muslihat Adejoke Gaffari, Onaara Enitan Obamuwagun, Predictive Analytics in Sport Management: Applying Machine Learning Models for Talent Identification and Team Performance Forecasting , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Imam Akintomiwa Akinlade, Musili Adeyemi Adebayo, Ahmed Olasunkanmi Tijani, Chiamaka Perpetua Ezenwaka, Obafemi Ibrahim Sikiru, Emmanuel Ayomide Oseni, The Role of Machine Learning Models in Optimizing High-Volume Customer Engagement and CRM Transformation , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Kingsley Uchendu, Chinaegbomkpa Umezurike, David, Friday Adiele, Position Analysis of the Relationship Between the Naira Exchange Rate, Gb Pounds, Euro and US-Dollars , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Nsikan Ime Obot, Busola Olugbon, Ibifubara Humprey, Ridwanulahi Abidemi Akeem, Equatorial All-Sky Downward Longwave Radiation Modelling , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- 1. Anthony I. G. Ekedegwa, Evans Ashiegwuike, Abdullahi Mohammed S. B, Seasonal Short-Term Load Forecasting (STLF) using combined Social Spider Optimisation (SSO) and African Vulture Optimisation Algorithm (AVOA) in Artificial Neural Networks (ANN) , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Aramide Ajayi, Anuoluwapo Rogers, Emmanuel Egyam, Justin Nnam, Chidinma Jonah, Leveraging Machine Learning for Predictive Analytics in Mergers and Acquisitions: Valuation, Risk Assessment, and Post-Merger Performance , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Fatima Binta Adamu, Muhammad Bashir Abdullahi, Sulaimon Adebayo Bashir, Abiodun Musa Aibinu, Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Edith Agberxonu, Abdulateef Disu, Chidin Dike, Toyosi Mustapha, Lawrence Abakah, Machine Learning and Artificial Intelligence in FinTech: Driving Innovation in Digital Payments, Fraud Detection, and Financial Inclusion , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Abubakar Tahiru, Oluwasanmi M. Odeniran, Shardrack Amoako, Developing Artificial Intelligence-Powered Circular Bioeconomy Models That Transform Forestry Residues into High-Value Materials and Renewable Energy Solutions , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
You may also start an advanced similarity search for this article.



