Development of an Enhanced Predictive Maintenance Models for Industrial Systems using Deep Learning Techniques
Keywords:
Predictive Maintenance, Deep Learning, Long Short-Term Memory (LSTM), Multilayer Perceptron (MLP), Industrial Systems.Abstract
Predictive maintenance has become essential in modern industrial systems for reducing unplanned downtime, lowering maintenance costs, and improving equipment reliability. This study presents a hybrid deep learning framework that combines Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) networks for accurate machine failure prediction. The model was trained using multivariate sensor data, including air temperature, process temperature, rotational speed, torque, and tool wear, enabling comprehensive monitoring of machine health. The hybrid architecture integrates LSTM’s strength in temporal sequence learning with MLP’s capability for nonlinear feature-based classification. Training results showed a steady reduction in loss and convergence in accuracy over 30 epochs, with the model achieving a training accuracy of 98.10%. During testing, the hybrid model achieved an overall prediction accuracy of 99.20%, outperforming standalone LSTM and MLP models. The system effectively detected multiple failure modes, including power failure, overstrain failure, and heat dissipation failure, while maintaining strong performance in distinguishing normal operating conditions. To demonstrate real-world applicability, the model was deployed via a Streamlit-based web interface for real-time monitoring and prediction. An integrated automated email alert system provided immediate notifications when potential failures were detected, supporting proactive maintenance decisions. Although minor performance variation was observed for less frequent failure categories due to class imbalance, the overall results confirm the robustness and scalability of the proposed framework. The findings highlight the significant potential of hybrid deep learning models in transforming maintenance strategies from preventive to data-driven predictive approaches, ultimately enhancing operational efficiency and system longevity in industrial environments.
Similar Articles
- Nsikan Ime Obot, Okwisilieze Uwadoka, Oluwasegun Israel Ayayi, Modelling Nonseasonal Daily Clearness Index for Solar Energy Estimation in Ilorin, Nigeria Using Support Vector Regression , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Benjamin Odey Omang, Andrew Kalu Njoku, Temple Okah Arikpo, Godwin Terwase Kave, Geochemistry of the Ironstones in Abiati Area, Southeastern Nigeria: Implications for Ore Genesis and Economic Potential , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Hauwa Muhammad, Estimated Dietary Intake of Essential Trace Elements from Selected fruits and vegetables in Minna town, Nigeria , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Joseph Jacob, Shinggu D. Yamta, Influence of Moisture Absorption on some Mechanical Properties of Groundnut Shell Powder Reinforced Waste LDPE Composites , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Patrick Gregory Udofia, Optimization of Low-Glycemic Composite Snacks from Wheat, African Yam Bean, Cocoyam, and Date Fruit Flours Using D-Optimal Mixture Design , Communication In Physical Sciences: Vol. 13 No. 1 (2026): Vol 13 Issue 1
- Richard Alexis Ukpe, Exploration of Orange Peel Waste as Precursor for the Synthesis and Characterization of highly Crystalline and Mesoporous Silicon Oxide Nanoparticles , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Sunday Emmanson Udoh, Ubong Isaac Nelson, Appraisal of Some Existing Technology on Water Quality: Appraisal and Design , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- A. Yahaya, A.A. Abdulbasit, A.D. Onoja, A. Abdulkareem, O.L. Idowu, J. Odoma, V.F. Omale, D. Onuche, R.O. Nayo, J. S. Abimaje, Analysis of Heavy Metals in Roasted Meat (Suya) in Anyigba, Kogi State, Nigeria and their Health Risk Assessment , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- Emmanuel Oluwemimo Falodun, Faith, Technology, and Safety: A Theoretical Framework for Religious Leaders Using Artificial Intelligence to Advocate for Gun Violence Prevention , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Abidemi Emmanuel Adeniji, Ayotunde Abel Ajayi, Abiodun Isiaka Egunjobi, Kayode Stephen Ojo, Difference Synchronization of Fractional Order Chaotic Systems Via Active Control , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
You may also start an advanced similarity search for this article.



