Development of an Enhanced Predictive Maintenance Models for Industrial Systems using Deep Learning Techniques
Keywords:
Predictive Maintenance, Deep Learning, Long Short-Term Memory (LSTM), Multilayer Perceptron (MLP), Industrial Systems.Abstract
Predictive maintenance has become essential in modern industrial systems for reducing unplanned downtime, lowering maintenance costs, and improving equipment reliability. This study presents a hybrid deep learning framework that combines Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) networks for accurate machine failure prediction. The model was trained using multivariate sensor data, including air temperature, process temperature, rotational speed, torque, and tool wear, enabling comprehensive monitoring of machine health. The hybrid architecture integrates LSTM’s strength in temporal sequence learning with MLP’s capability for nonlinear feature-based classification. Training results showed a steady reduction in loss and convergence in accuracy over 30 epochs, with the model achieving a training accuracy of 98.10%. During testing, the hybrid model achieved an overall prediction accuracy of 99.20%, outperforming standalone LSTM and MLP models. The system effectively detected multiple failure modes, including power failure, overstrain failure, and heat dissipation failure, while maintaining strong performance in distinguishing normal operating conditions. To demonstrate real-world applicability, the model was deployed via a Streamlit-based web interface for real-time monitoring and prediction. An integrated automated email alert system provided immediate notifications when potential failures were detected, supporting proactive maintenance decisions. Although minor performance variation was observed for less frequent failure categories due to class imbalance, the overall results confirm the robustness and scalability of the proposed framework. The findings highlight the significant potential of hybrid deep learning models in transforming maintenance strategies from preventive to data-driven predictive approaches, ultimately enhancing operational efficiency and system longevity in industrial environments.
Similar Articles
- Sunday Emmanson Udoh, Ubong Isaac Nelson, Appraisal of Some Existing Technology on Water Quality: Appraisal and Design , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Patrick Gregory Udofia, Optimization of Low-Glycemic Composite Snacks from Wheat, African Yam Bean, Cocoyam, and Date Fruit Flours Using D-Optimal Mixture Design , Communication In Physical Sciences: Vol. 13 No. 1 (2026): Vol 13 Issue 1
- Precious Ogechi Ufomba, Ogochukwu Susan Ndibe, IoT and Network Security: Researching Network Intrusion and Security Challenges in Smart Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Uzoma Nwokoma Esomchi, Performance of Generated Models with Statistical Tools for Estimation of Solar Radiation in Umudike, Abia State, Nigeria , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Robinson Ogochukwu Isichei, The Intersection of Artificial Intelligence, Music, and Religion: An Extensive Review Highlighting Contemporary and Emerging Perspectives , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Amadi Ugwulo Chinyere, Modelling Glucose-Insulin Dynamics: Insights for Diabetes Management , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Olawale Babatunde Olatinsu, Segun Opeyemi Olawusi, Mathew Osaretin Ogieva, Electrical Resistivity Characterization of Peat and Clay Profiles at a Suburb of Ota, Southwest Nigeria , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Umar Dangoje Musa, Eloayi David Paul, Sani Uba, Nsikan Nwokem, Sani Danladi, Risk Assessment of Selected Metallic Pollutants in Fish from Zuru dam, Kebbi State, Nigeria , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Uzoma Ifeanyi Oduah, Paul Chinagorom Nwosu, Emmanuel Ayomide Agbojule , Chisom Gabriel Chukwuka , Daniel Oluwole, Ifedayo Okungbowa, Automation of electric power source changeover switches deploying artificial intelligence. , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Oladimeji Enock Oluwole, Umeh Emmanuel Chukwuebuka, Idundun Victory Toritseju, Koffa Durojaiye Jude , Obaje Vivian Onechojo , Petinrin Moses Omolayo , Adeleke Joshua Toyin, The performance analysis of a Wood-Saxon driven Quantum-Mechanical Carnot Engine , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
You may also start an advanced similarity search for this article.



